Compute a function that has Double summation
11 views (last 30 days)
Show older comments
I want to compute . I have tried with code
Q1 = @(n) (1/alpha_3b)^(n + 2) * (1/alpha_1)^2 * ...
(sum((alpha_3b/alpha_1).^(1:10000)) * sum((alpha_3b/alpha_3).^(1:n+1)) - ...
sum(sum((alpha_3b/alpha_3).^i .* (alpha_3b/alpha_1).^(1:n+1-i))));
but am getting error.
The other values are
lambda = 0.7;
mu_1=1.2;
mu_2=1;
mu = mu_1 + mu_2;
gamma_1 = 0.2;
gamma_2 = 0.3;
theta_1 = 0.2;
theta_2 = 0.1;
eta = 0.1;
xi = 0.01;
beta = 1 / (lambda + mu + xi);
beta_1 = 1 / (lambda + mu_1 + xi);
beta_2 = 1 / (lambda + mu_2 + xi);
alpha_1 = (lambda + mu_2 + theta_1 + xi + sqrt((lambda + mu_2 + theta_1 + xi)^2 - 4 * lambda * mu_2)) / (2 * lambda);
alpha_2 = (lambda + mu_1 + theta_2 + xi + sqrt((lambda + mu_1 + theta_2 + xi)^2 - 4 * lambda * mu_1)) / (2 * lambda);
alpha_3 = (lambda + mu + xi + sqrt((lambda + mu + xi)^2 - 4 * lambda * mu)) / (2 * lambda);
alpha_3b = (lambda + mu + xi - sqrt((lambda + mu + xi)^2 - 4 * lambda * mu)) / (2 * lambda);
chi_1 = gamma_1 * alpha_1 / ((lambda + xi) * alpha_1 - lambda * mu_2);
chi_2 = gamma_2 * alpha_2 / ((lambda + xi) * alpha_2 - lambda * mu_1);
0 Comments
Answers (2)
KALYAN ACHARJYA
on 4 Dec 2023
Q1 = @(n) (1/alpha_3b)^(n + 2) * (1/alpha_1)^2 * ...
(sum((alpha_3b/alpha_1).^(1:10000)) * sum((alpha_3b/alpha_3).^(1:n+1)) - ...
sum(sum((alpha_3b/alpha_3).^i .* (alpha_3b/alpha_1).^(1:n+1-i))))
lambda = 0.7;
mu_1=1.2;
mu_2=1;
mu = mu_1 + mu_2;
gamma_1 = 0.2;
gamma_2 = 0.3;
theta_1 = 0.2;
theta_2 = 0.1;
eta = 0.1;
xi = 0.01;
beta = 1 / (lambda + mu + xi);
beta_1 = 1 / (lambda + mu_1 + xi);
beta_2 = 1 / (lambda + mu_2 + xi);
alpha_1 = (lambda + mu_2 + theta_1 + xi + sqrt((lambda + mu_2 + theta_1 + xi)^2 - 4 * lambda * mu_2)) / (2 * lambda);
alpha_2 = (lambda + mu_1 + theta_2 + xi + sqrt((lambda + mu_1 + theta_2 + xi)^2 - 4 * lambda * mu_1)) / (2 * lambda);
alpha_3 = (lambda + mu + xi + sqrt((lambda + mu + xi)^2 - 4 * lambda * mu)) / (2 * lambda);
alpha_3b = (lambda + mu + xi - sqrt((lambda + mu + xi)^2 - 4 * lambda * mu)) / (2 * lambda);
chi_1 = gamma_1 * alpha_1 / ((lambda + xi) * alpha_1 - lambda * mu_2);
chi_2 = gamma_2 * alpha_2 / ((lambda + xi) * alpha_2 - lambda * mu_1);
While there are no coding errors in given code, however the verification of correctness and completeness has not been checked?.
0 Comments
Torsten
on 4 Dec 2023
Edited: Torsten
on 4 Dec 2023
All the series involved are geometric series for which the finite and infinite sums are known:
sum_{i=1}^{i=n} q^i = q * (1-q^n)/(1-q) ( q <> 1)
sum_{i=1}^{i=Inf} q^i = q/(1-q) (|q| < 1)
Thus if you invest a little effort, you can get an analytical expression for Q1(n):
syms alpha_3b alpha_1 alpha_3 positive
syms m n i j integer
assume(abs(alpha_3b/alpha_1)<1)
s1 = symsum((alpha_3b/alpha_1)^j,j,1,Inf)
s1 = alpha_3b/(alpha_1-alpha_3b); % By inspection
s2 = symsum((alpha_3b/alpha_3)^m,m,1,n+1)
s3 = symsum((alpha_3b/alpha_1)^j,j,1,n+1-i)
s4 = symsum(s3*(alpha_3b/alpha_3)^i,i,1,n)
Q1 = simplify((1/alpha_3b)^(n+2)*(1/alpha_1)^2*(s1*s2-s4))
See Also
Categories
Find more on Gamma Functions in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!