how can I smooth the graph for a set of varying data points??

1 view (last 30 days)
How can I make the graph more smooth and equlibriate perfectly with the upper graph like the right one in MATLAB??
data sets are given below :

Accepted Answer

Mathieu NOE
Mathieu NOE on 30 Nov 2023
hello
maybe this ? (I optd for a exponential fit of your lattice data)
data1 = readmatrix('lattice vs time plot.xlsx');
x1 = data1(:,1);
y1 = data1(:,2);
data2 = readmatrix('electron vs time plot.xlsx');
x2 = data2(:,1);
y2 = data2(:,2);
[k, yInf, y0, yFit] = fitExponential(x1, y1);
figure(1);
plot(x1,y1,'g',x2,y2,'r','linewidth',2);
hold on
plot(x1,yFit,'k','linewidth',5);
hold off
% apply corrective factor on fitted curve to math the other curve asymptote
y2_asymp = mean(y2(round(end/2):end));
correction_factor = y2_asymp/yFit(end);
yFit = yFit*correction_factor;
figure(2);
plot(x1,y1,'g',x2,y2,'r','linewidth',2);
hold on
plot(x1,yFit,'k','linewidth',5);
hold off
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [k, yInf, y0, yFit] = fitExponential(x, y)
% FITEXPONENTIAL fits a time series to a single exponential curve.
% [k, yInf, y0] = fitExponential(x, y)
%
% The fitted curve reads: yFit = yInf + (y0-yInf) * exp(-k*(x-x0)).
% Here yInf is the fitted steady state value, y0 is the fitted initial
% value, and k is the fitted rate constant for the decay. Least mean square
% fit is used in the estimation of the parameters.
%
% Outputs:
% * k: Relaxation rate
% * yInf: Final steady state
% * y0: Initial state
% * yFit: Fitted time series
%
% improve accuracy by subtracting large baseline
yBase = y(1);
y = y - y(1);
fh_objective = @(param) norm(param(2)+(param(3)-param(2))*exp(-param(1)*(x-x(1))) - y, 2);
initGuess(1) = -(y(2)-y(1))/(x(2)-x(1))/(y(1)-y(end));
initGuess(2) = y(end);
initGuess(3) = y(1);
param = fminsearch(fh_objective,initGuess);
k = param(1);
yInf = param(2) + yBase;
y0 = param(3) + yBase;
yFit = yInf + (y0-yInf) * exp(-k*(x-x(1)));
end
  4 Comments

Sign in to comment.

More Answers (0)

Categories

Find more on Interpolation in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!