Solve LMIs control in delay system

3 views (last 30 days)
Hoang Vu Huy
Hoang Vu Huy on 6 Nov 2023
I need to simulation this paper https://doi.org/10.1016/j.ifacol.2016.10.403
Find maximum to exist matrices P>0, Z>0 and Q symmetric such that
and
where
How to solve this problem? I try as follows, but it has some warning that
%% Clear
clear; clc; close;
%% Constant & Initial Condition
t = 0:0.01:20;
K = [-2 3 0; 1 1 0; -3 1 -3];
alp = [1 0.5 -1];
f = sin(t);
%% Solve LMIs
% Declare Variables
setlmis([])
A1 = diag(sign(alp))*K*diag(alp);
P = lmivar(2,[3 3]);
Z = lmivar(2,[3 3]);
Q = lmivar(1,[3 1]);
tau = 0.1;
% Definitions of the LMI
%LMI#1
lmiterm([-1 1 1 P], 1, 1); % LMI #1: P
lmiterm([-1 1 1 Z], 1, 1); % LMI #1: Z
lmiterm([-1 1 2 -Z], 1, 1); % LMI #1: -Z
lmiterm([-1 2 1 -Z], 1, 1); % LMI #1: -Z
lmiterm([-1 2 2 Q], tau,1); % LMI #1: -tau_dash*Q
lmiterm([-1 2 2 Z], 1, 1); % LMI #1: Z
%LMI#2
lmiterm([2 1 1 Q], 1, 1); % LMI #2: Q
lmiterm([2 1 1 Z], 1/tau, -1); % LMI #2: -Z/tau
lmiterm([2 2 1 P], A1', 1); %LMI #2: A1'*P
lmiterm([2 2 1 Z], 1/tau, 1); %LMI #2: Z/tau
lmiterm([2 3 1 0], 0); %LMI #2: 0
lmiterm([2 1 2 P], 1, A1 ); % LMI #2: P*A1
lmiterm([2 1 2 Z], 1/tau, 1); % LMI #2: Z/tau
lmiterm([2 2 2 Q], 1, -1); %LMI #2: -Q
lmiterm([2 2 2 Z], 1/tau, -1); %LMI #2: -Z/tau
lmiterm([2 3 2 Z], tau, A1); %LMI #2: tau*Z*A1
lmiterm([2 1 3 0], 0); % LMI #2: 0
lmiterm([2 2 3 Z], tau*A1', 1); % LMI #2: tau*A1'*Z
lmiterm([2 3 3 Z], -tau, 1); %LMI #2:
%LMI#3
lmiterm([-3 1 1 P],1,1); % LMI #3: P
%LMI#4
lmiterm([-4 1 1 Z],1,1); % LMI #4: Z
lmis = getlmis;
[tmin,xfeas] = feasp(lmis);

Answers (0)

Categories

Find more on Linear Matrix Inequalities in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!