error estimate using finite difference method

1 view (last 30 days)
Kumar
Kumar on 29 Oct 2023
Edited: Torsten on 30 Oct 2023
% Program to implement the
% Backward in time-Central in space
% Method to solve heat conduction equation
clear all
close all
format long
clc
% Input variables
%alpha = 1;
N = 15; % Number of subintervals
error = zeros(5,1);
order = zeros(4,1);
h = zeros(5,1);
% Calculate step size
for p=1:5
M = 1000; % Time step size
a = 0; b = 1; % Domain
t0 = 0; tf = 1;
h(p) = (b-a)/N;
k = (tf-t0)/M;
% Unconditionally stable
mu = k/(h(p)^2);
for i=1:N+1
x(i) = a + (i-1)*h(p);
f= sin(pi*x) + sin(2*pi*x);
end
u = zeros(N+1,M);
% Find the approximate solution at each time step
for n = 1:M
t = n*k; % current time
% boundary condition at left side
gl = sin(pi*a)*exp(-pi*pi*t)+sin(2*pi*a)*exp(-4*pi*pi*t);
% boundary condition at right side
gr = sin(pi*b)*exp(-pi*pi*t)+sin(2*pi*b)*exp(-4*pi*pi*t);
if n==1 % first time step
for j=2:N % interior nodes
u(j,n) = f(j) + mu*(f(j+1)-2*f(j)+f(j-1));
end
u(1,n) = gl; % the left-end point
u(N+1,n) = gr; % the right-end point
else
for j=2:N % interior nodes
u(j,n)=u(j,n-1)+mu*(u(j+1,n-1)-2*u(j,n-1)+u(j-1,n-1));
end
u(1,n) = gl; % the left-end point
u(N+1,n) = gr; % the right-end point
end
end
%u(q) = u(j,n);
N = N*2;
%for j = 1:N-1
error(p) = norm((u(j+1,n)-u(j,n)),2);
% N = N*2;
%end
for j=1:p-1
order(j) = log(error(j)/error(j+1))/log(2);
end
end
I need help in error statement. I want to estimate error from previous value of h to current value of h.
  5 Comments
Kumar
Kumar on 30 Oct 2023
Edited: Kumar on 30 Oct 2023
yes, i want to take 2 norm to estimate the error.
Torsten
Torsten on 30 Oct 2023
Edited: Torsten on 30 Oct 2023
I plotted the solution curves for h=1/15 for start and end time of your simulation.
For which output time(s) do you want to compute the differences in the solution for different values of h ?
% Program to implement the
% Backward in time-Central in space
% Method to solve heat conduction equation
clear all
close all
format long
clc
% Input variables
%alpha = 1;
N = 15; % Number of subintervals
error = zeros(5,1);
order = zeros(4,1);
h = zeros(5,1);
% Calculate step size
for p=1:1
M = 1000; % Time step size
a = 0; b = 1; % Domain
t0 = 0; tf = 1;
h(p) = (b-a)/N;
k = (tf-t0)/M;
% Unconditionally stable
mu = k/(h(p)^2);
for i=1:N+1
x(i) = a + (i-1)*h(p);
f= sin(pi*x) + sin(2*pi*x);
end
u = zeros(N+1,M);
% Find the approximate solution at each time step
for n = 1:M
t = n*k; % current time
% boundary condition at left side
gl = sin(pi*a)*exp(-pi*pi*t)+sin(2*pi*a)*exp(-4*pi*pi*t);
% boundary condition at right side
gr = sin(pi*b)*exp(-pi*pi*t)+sin(2*pi*b)*exp(-4*pi*pi*t);
if n==1 % first time step
for j=2:N % interior nodes
u(j,n) = f(j) + mu*(f(j+1)-2*f(j)+f(j-1));
end
u(1,n) = gl; % the left-end point
u(N+1,n) = gr; % the right-end point
else
for j=2:N % interior nodes
u(j,n)=u(j,n-1)+mu*(u(j+1,n-1)-2*u(j,n-1)+u(j-1,n-1));
end
u(1,n) = gl; % the left-end point
u(N+1,n) = gr; % the right-end point
end
end
%u(q) = u(j,n);
N = N*2;
%for j = 1:N-1
error(p) = norm((u(j+1,n)-u(j,n)),2);
% N = N*2;
%end
for j=1:p-1
order(j) = log(error(j)/error(j+1))/log(2);
end
end
plot(x,[u(:,1),u(:,end)])

Sign in to comment.

Answers (0)

Categories

Find more on MATLAB in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!