The value of 'ValidationData' is invalid. Duplicate table variable name: 'input'. error during neural network training

7 views (last 30 days)
I want to train an autoencoder that copies the input image.
I used augmentedImageDatastore for image resizing, then combined two augmentedImageDatastore to use as input and responses using the 'combine' function for the autoencoder.
However, If i run the code below, I see the error message:
The value of 'ValidationData' is invalid. Duplicate table variable name: 'input'.
I checked the 'combine' function for 'ImageDatastore' work well but I am not sure why it is not work for 'augmentedImageDatastore'.
Thank you for your help.
digitDatasetPath = fullfile("my path");
imds = imageDatastore(digitDatasetPath, ...
IncludeSubfolders=true,LabelSource="foldernames");
imds.ReadSize = 1024;
imds = shuffle(imds);
[imdsTrain,imdsVal,imdsTest] = splitEachLabel(imds,0.95,0.025);
% Create augmented datastores for input and response
augmentedTrainInput = augmentedImageDatastore([224,224,3], imdsTrain);
augmentedTrainOutput = augmentedImageDatastore([224,224,3], imdsTrain);
augmentedValInput = augmentedImageDatastore([224,224,3], imdsVal);
augmentedValOutput = augmentedImageDatastore([224,224,3], imdsVal);
augmentedTestInput = augmentedImageDatastore([224,224,3], imdsTest);
augmentedTestOutput = augmentedImageDatastore([224,224,3], imdsTest);
% Combine the augmented datastores for input and response
dsTrain = combine(augmentedTrainInput, augmentedTrainOutput);
dsVal = combine(augmentedValInput, augmentedValOutput);
dsTest = combine(augmentedTestInput, augmentedTestOutput);
% Define the network layers
imageLayer = imageInputLayer([224,224,3]);
encodingLayers = [ ...
convolution2dLayer(3,8,Padding="same"), ...
reluLayer, ...
maxPooling2dLayer(2,Padding="same",Stride=2), ...
convolution2dLayer(3,16,Padding="same"), ...
reluLayer, ...
maxPooling2dLayer(2,Padding="same",Stride=2), ...
convolution2dLayer(3,32,Padding="same"), ...
reluLayer, ...
maxPooling2dLayer(2,Padding="same",Stride=2)];
decodingLayers = [ ...
transposedConv2dLayer(2,32,Stride=2), ...
reluLayer, ...
transposedConv2dLayer(2,16,Stride=2), ...
reluLayer, ...
transposedConv2dLayer(2,8,Stride=2), ...
reluLayer, ...
convolution2dLayer(1,3,Padding="same"), ...
clippedReluLayer(1.0), ...
regressionLayer];
layers = [imageLayer,encodingLayers,decodingLayers];
options = trainingOptions("adam", ...
MaxEpochs=50, ...
MiniBatchSize=imds.ReadSize, ...
ValidationData=dsVal, ...
ValidationPatience=5, ...
Plots="training-progress", ...
OutputNetwork="best-validation-loss", ...
ExecutionEnvironment="multi-gpu", ...
DispatchInBackground=true,...
Verbose=true);
net = trainNetwork(dsTrain,layers,options);
modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
save("trainedImageToImageRegressionNet-"+modelDateTime+".mat","net");
ypred = predict(net,dsTest);
testBatch = preview(dsTest);
idx = 1;
y = ypred(:,:,:,idx);
x = testBatch{idx,1};
ref = testBatch{idx,2};
montage({x,y});

Accepted Answer

Joss Knight
Joss Knight on 13 Sep 2023
augmentedImageDatastore returns a table so cannot be trivially combined. You should first transform it to convert it into a cell array of just the input values.
>> amds = augmentedImageDatastore([224,224,3],digitDatastore);
>> read(amds)
ans =
128×2 table
input response
_______________ ________
{224×224 uint8} 0
{224×224 uint8} 0
{224×224 uint8} 0
{224×224 uint8} 0
{224×224 uint8} 0
{224×224 uint8} 0
{224×224 uint8} 0
{224×224 uint8} 0
: :
Display all 128 rows.
>> amds = transform(augmentedImageDatastore([224,224,3],digitDatastore), @(t)t.input);
>> read(amds)
ans =
128×1 cell array
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
:

More Answers (0)

Categories

Find more on Image Data Workflows in Help Center and File Exchange

Products


Release

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!