Equations and Boundary conditions are Unequal
    5 views (last 30 days)
  
       Show older comments
    
%%% THe present code is of the attached (Model#02) pdf, need modification to run.
%%%  REFERENCE: This type of work was done in DOI: 10.1002/num.22672 (More in size, so cant be uploaded)
main()
function main
We = 2; n = 0.5; M = 1; Pr = 7; Rd = 0.5; Tw = 1.5; Nt = 0.3; Nb = 0.5; Ec = 0.3; Q = 0.5; Le = 2; K = 0.1; D1 = 0.1; 
m = 0.5; E = 0.1; Lb = 0.5;  Pe = 2; D2 = 1; S1 = 0.2; S2 = 0.2; Om = 0.5; 
xa = 0; xb = 5; solinit = bvpinit(linspace(xa,xb,100),[0 1 0 1 0 1 0 1 0 1 0 1]); sol = bvp5c(@ode,@bc,solinit); x = linspace(xa,xb,100);  S = deval(sol,x);
    function BC = bc(ya,yb)
        BC = [ya([1,4]); ya(2) - S1; ya([6,8,10]) - 1; yb([6,8,10]); yb(2) - S2; yb(4) - Om];        
    end 
    function EQ = ode(x,y) 
        Af = (1+(We*y(3))^2)^((n-1)/2) + (n-1)*(We*y(3))^2*(1+(We*y(3))^2)^((n-3)/2);    Ag = (1+(We*y(5))^2)^((n-1)/2) + (n-1)*(We*y(5))^2*(1+(We*y(5))^2)^((n-3)/2);
        At = 4*Rd*(Tw-1)*y(7)^2*(1+(Tw-1)*y(6))^2;      X = - E/(1+D1*y(6));
        EQ = [ -2*y(2);  
            y(3);      (M*y(2) + y(2)^2 - y(4)^2 + y(1)*y(3))/Af; 
            y(5);      (M*y(4) + 2*y(2)*y(4) + y(1)*y(5))/Ag; 
            y(7);      (Pr/At)*( y(1)*y(7) - Nt*y(7)^2 - Nb*y(7)*y(9) - Ec*(y(3)^2 + y(5)^2) - M*Ec*(y(2)^2 + y(4)^2) - Q*y(6) );
            y(9);      Pr*Le*( y(1)*y(9) + K*(1+D1*y(6))^m*y(8)*exp(X) - (Nt/Nb)*((Pr/At)*( y(1)*y(7) - Nt*y(7)^2 - Nb*y(7)*y(9) - Ec*(y(3)^2 + y(5)^2) - M*Ec*(y(2)^2 + y(4)^2) - Q*y(6) ))   );
            y(11);     Lb*y(1)*y(11)+ Pe*( y(9)*y(11) + (D2 + y(10)) )*Pr*Le*( y(1)*y(9) + K*(1+D1*(y(6))^m)*y(8)*exp(X) - (Nt/Nb)*((Pr/At)*( y(1)*y(7) - Nt*y(7)^2 - Nb*y(7)*y(9) - Ec*(y(3)^2 + y(5)^2) - M*Ec*(y(2)^2 + y(4)^2) - Q*y(6) ) ))
            ];
        figure(10),plot(x,S(2,:),'-b','LineWidth',1.5),hold on
    end
figure(2),plot(x,S(2,:));hold on
end
0 Comments
Accepted Answer
  Walter Roberson
      
      
 on 14 Aug 2023
        
      Moved: Walter Roberson
      
      
 on 14 Aug 2023
  
      S is the output of the deval() and so is not available until after the bvp5c has been run. But the ode function wants to plot S, which requires S be defined but it is not defined until after the ode is finished.
Your plotting should be moved to before the bc function definition.
Meanwhile, your ode function needs to return a column vector of length 12, same length as your initial condition; at the moment it is only length 11.
main()
function main
We = 2; n = 0.5; M = 1; Pr = 7; Rd = 0.5; Tw = 1.5; Nt = 0.3; Nb = 0.5; Ec = 0.3; Q = 0.5; Le = 2; K = 0.1; D1 = 0.1; 
m = 0.5; E = 0.1; Lb = 0.5;  Pe = 2; D2 = 1; S1 = 0.2; S2 = 0.2; Om = 0.5; 
xa = 0; xb = 5;
solinit = bvpinit(linspace(xa,xb,100),[0 1 0 1 0 1 0 1 0 1 0 1]);
sol = bvp5c(@ode,@bc,solinit);
x = linspace(xa,xb,100);
S = deval(sol,x);
figure(10),plot(x,S(2,:),'-b','LineWidth',1.5),hold on
    function BC = bc(ya,yb)
        BC = [ya([1,4]); ya(2) - S1; ya([6,8,10]) - 1; yb([6,8,10]); yb(2) - S2; yb(4) - Om];        
    end 
    function EQ = ode(x,y) 
        Af = (1+(We*y(3))^2)^((n-1)/2) + (n-1)*(We*y(3))^2*(1+(We*y(3))^2)^((n-3)/2);    Ag = (1+(We*y(5))^2)^((n-1)/2) + (n-1)*(We*y(5))^2*(1+(We*y(5))^2)^((n-3)/2);
        At = 4*Rd*(Tw-1)*y(7)^2*(1+(Tw-1)*y(6))^2;      X = - E/(1+D1*y(6));
        EQ = [ -2*y(2);  
            y(3);      (M*y(2) + y(2)^2 - y(4)^2 + y(1)*y(3))/Af; 
            y(5);      (M*y(4) + 2*y(2)*y(4) + y(1)*y(5))/Ag; 
            y(7);      (Pr/At)*( y(1)*y(7) - Nt*y(7)^2 - Nb*y(7)*y(9) - Ec*(y(3)^2 + y(5)^2) - M*Ec*(y(2)^2 + y(4)^2) - Q*y(6) );
            y(9);      Pr*Le*( y(1)*y(9) + K*(1+D1*y(6))^m*y(8)*exp(X) - (Nt/Nb)*((Pr/At)*( y(1)*y(7) - Nt*y(7)^2 - Nb*y(7)*y(9) - Ec*(y(3)^2 + y(5)^2) - M*Ec*(y(2)^2 + y(4)^2) - Q*y(6) ))   );
            y(11);     Lb*y(1)*y(11)+ Pe*( y(9)*y(11) + (D2 + y(10)) )*Pr*Le*( y(1)*y(9) + K*(1+D1*(y(6))^m)*y(8)*exp(X) - (Nt/Nb)*((Pr/At)*( y(1)*y(7) - Nt*y(7)^2 - Nb*y(7)*y(9) - Ec*(y(3)^2 + y(5)^2) - M*Ec*(y(2)^2 + y(4)^2) - Q*y(6) ) ))
            ];
        size(EQ)
    end
figure(2),plot(x,S(2,:));hold on
end
4 Comments
  Torsten
      
      
 on 15 Aug 2023
				You generate an artificial degree of freedom by this differentiation. Depending on the second boundary condition you impose you may or may not reproduce the solution of the original problem (first-order ODE with only one boundary condition).
Test it for a simple example.
More Answers (0)
See Also
Categories
				Find more on Visualization in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!