can someone help me to measure the avgferet, avgminferet and area of the edges in my image in this code

2 views (last 30 days)
edges = edge(imgContrast,'Canny');
se = strel('disk', 1);
edgesClean = imclose(edges, se);
edgesClean = imfill(edgesClean, 'holes');
zoneMask = zoneMask .* im2double(edgesClean) .* DD;
% Calculate connected components
cc = bwconncomp(zoneMask);
% Calculate region properties for each connected component in this zone
statscc = regionprops(cc, 'Area', 'Centroid', 'Eccentricity', 'Perimeter', 'MajorAxisLength', 'MinorAxisLength','Circularity');
% Calculate features for this zone
numObjects = cc.NumObjects;
if numObjects > 0
areas = [statscc.Area];
profileCounts(k) = numObjects;
totalArea(k) = sum(areas) * pixelSize^2;
zoneArea(k) = sum(zoneMask, 'all') * pixelSize^2;
% Calculate average size of mitochondria for this zone
avgSize(k) = mean(areas) * pixelSize^2;
circularities = [statscc.Circularity];
circularities(circularities > 1) = 1; % Cap circularities greater than 1 at 1
avgCircularity(k) = mean(circularities(isfinite(circularities)));
ferets = [statscc.FeretDiameter];
avgFeret(k) = mean(ferets) * pixelSize;
minFerets = [statscc.MinFeretDiameter];
avgMinFeret(k) = mean(minFerets) * pixelSize;
end
Does this function work? Is this how you properly calculate feret diameters and the other features? Can someone please confirm? Thank you!
  3 Comments
Chanille
Chanille on 27 Apr 2023
Edited: Chanille on 27 Apr 2023
@John D'Errico There was a wesite error and I accidentally posted a duplicate question, it was not intentional. Thank you for bringing this to my attention.

Sign in to comment.

Accepted Answer

Kevin Holly
Kevin Holly on 27 Apr 2023
imageData = imread('C1_L1_WDa.jpg');
imshow(imageData)
figure
[rows, columns, numberOfColorChannels] = size(imageData);
if numberOfColorChannels > 1
grayImage = rgb2gray(imageData); % Convert to color.
end
% Apply background subtraction.
grayImage = imtophat(grayImage, strel('disk', 100));
%the lower this number the less lipid droplets
% Apply contrast correction.
grayImage = imadjust(grayImage);
% Apply Gaussian filtering.
grayImage = imgaussfilt(grayImage, 3);
% Apply thresholding.
thresholdValue = graythresh(grayImage);
binaryImage = imbinarize(grayImage, thresholdValue);
% Remove black elongated shapes.
binaryImage = bwareaopen(binaryImage, 200);
binaryImage = imclearborder(binaryImage);
binaryImage = imfill(binaryImage, 'holes');
% mask
% Threshold the image to create a binary mask
gray_img = rgb2gray(imageData); % Convert to color.
threshold = 5;
mask = gray_img > threshold;
% Remove small objects
min_size = 1000;
mask = bwareaopen(mask, min_size);
% Fill holes
mask = imfill(mask, 'holes');
% Erode and dilate the mask to remove noise and smooth edges
se = strel('disk', 5);
mask = imerode(mask, se);
mask = imdilate(mask, se);
% Define the pixel size in square microns
pixelSize = 1;
numZones = 12;
fontSize = 12;
x = 4592.86363636364;
y = 705.954545454545;
% Find out what the max distance will be by computing the distance to each corner.
distanceToUL = sqrt((1-y)^2 + (1-x)^2);
distanceToUR = sqrt((1-y)^2 + (columns-x)^2);
distanceToLL = sqrt((rows-y)^2 + (1-x)^2);
distanceToLR= sqrt((rows-y)^2 + (columns-x)^2);
maxDistance = ceil(max([distanceToUL, distanceToUR, distanceToLL, distanceToLR]));
% Calculate the radius of each zone
radius = linspace(0, maxDistance, numZones+1);
% Preallocate
zonemask = zeros(size(mask,1),size(mask,2),numZones+1);
fig2 = figure;
imshow(mask)
figure(fig2)
c(1) = drawcircle("Center",[x, y],"Radius",radius(1),"LineWidth",1,"Color","b","Visible","off");
% Draw the circles for each zone
for ii = 2:numZones+1
figure(fig2)
c(ii) = drawcircle("Center",[x, y],"Radius",radius(ii),"LineWidth",1,"Color","b","Visible","off");
zonemask(:,:,ii) = createMask(c(ii))-createMask(c(ii-1));
viscircles([x, y], radius(ii), 'LineStyle', '--', 'LineWidth', 1);
total_intensity(ii) = sum(sum(gray_img.*uint8(mask).*uint8(zonemask(:,:,ii)))); % or replace binaryImage with mask
total_zone_pixels(ii) = sum(sum(uint8(mask).*uint8(zonemask(:,:,ii))));
end
mean_intensity_zone = total_intensity./total_zone_pixels
mean_intensity_zone = 1×13
NaN 20.2110 18.5171 18.3373 16.1967 20.3758 21.0019 24.8756 23.1034 23.8200 22.3985 23.9102 16.3538
You need to add 'MaxFeretProperties' and 'MinFeretProperties' as inputs to regionprops
edges = edge(mask,'Canny');
se = strel('disk', 1);
edgesClean = imclose(edges, se);
edgesClean = imfill(edgesClean, 'holes');
zoneMask = mask;
zoneMask = zoneMask .* im2double(edgesClean);% .* DD;
% Calculate connected components
cc = bwconncomp(zoneMask);
% Calculate region properties for each connected component in this zone
statscc = regionprops(zoneMask, 'Area', 'Centroid', 'Eccentricity', 'Perimeter', 'MajorAxisLength', 'MinorAxisLength','Circularity','MaxFeretProperties','MinFeretProperties');
k=1;
statscc
statscc = struct with fields:
Area: 939999 Centroid: [2.3244e+03 851.9382] MajorAxisLength: 5.1200e+03 MinorAxisLength: 1.4472e+03 Eccentricity: 0.9592 Circularity: 1 Perimeter: 0 MaxFeretDiameter: 5.4429e+03 MaxFeretAngle: -164.5824 MaxFeretCoordinates: [2×2 double] MinFeretDiameter: 1462 MinFeretAngle: -90 MinFeretCoordinates: [2×2 double]
% Calculate features for this zone
numObjects = cc.NumObjects;
if numObjects > 0
areas = [statscc.Area];
% profileCounts(k) = numObjects;
totalArea(k) = sum(areas) * pixelSize^2;
zoneArea(k) = sum(zoneMask, 'all') * pixelSize^2;
% Calculate average size of mitochondria for this zone
avgSize(k) = mean(areas) * pixelSize^2;
circularities = [statscc.Circularity];
circularities(circularities > 1) = 1; % Cap circularities greater than 1 at 1
avgCircularity(k) = mean(circularities(isfinite(circularities)));
ferets = [statscc.MaxFeretDiameter];
avgFeret(k) = mean(ferets) * pixelSize;
minFerets = [statscc.MinFeretDiameter];
avgMinFeret(k) = mean(minFerets) * pixelSize;
end
  3 Comments
Kevin Holly
Kevin Holly on 27 Apr 2023
It looks right to me. I am assuming pixelSize would be a unit conversion and each of these calcuations takes place within a for loop, where the zonemask changes every iteration.
Chanille
Chanille on 28 Apr 2023
I changed how the zones are segmented I think that’s why the circularities are now 1 and the data is behaving stagnant. Can you suggest how to fix this? I’ve attached the full file with picture.

Sign in to comment.

More Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!