Issue with large memory required for non-linear optimizer
3 views (last 30 days)
Show older comments
Yannis Stamatiou
on 18 Apr 2023
Commented: Yannis Stamatiou
on 20 Apr 2023
Dear Matlab community hi.
I tried to run the following optimization problem for a 2-dimensional optimization variable of size 150x150. For some reason, the system creates somehow in the optimization process (I guess) some matrix of size (150^2)x(150^2). I tried to solve the issue for several days now (with the different options shown in comments) but I cannot understand why MATLAB creates such a huge matrix in the solution process. Is there, perhaps, some other nonlinear optimizer in MATLAB that does not require such huge matrices? Any help on this issue would be very helpful.
With best wishes,
Yannis
a = 4;
b = 2.1;
c = 4;
x = optimvar('x',150,150);
prob = optimproblem;
prob.Objective = parameterfun(x,a,b,c);
%opts=optimoptions('fmincon','Algorithm','interior-point','SpecifyObjectiveGradient',true,'HessianFcn','objective');
%opts=optimoptions('quadprog','Algorithm','trust-region-reflective','Display','off');
opts = optimoptions('fminunc','Algorithm','trust-region');
opts.HessianApproximation = 'lbfgs';
opts.SpecifyObjectiveGradient = false;
x0.x = 0.5 * ones([150,150]);
%[sol,qfval,qexitflag,qoutput] = solve(prob,x0,'options',opts);
[sol,fval] = solve(prob,x0)
3 Comments
Accepted Answer
Alan Weiss
on 19 Apr 2023
You have 150^2 optimization variables. I do not see your parameterfun function, but if it is not a supported function for automatic differentiation, then fminunc cannot use the 'trust-region' algorithm because that algorithm requires a gradient function. The LBFGS Hessian approximation is not supported in the 'quasi-newton' algorithm. Sorry.
Alan Weiss
MATLAB mathematical toolbox documentation
6 Comments
Bruno Luong
on 20 Apr 2023
@Yannis Stamatiou " I cannot figure out exactly why"
The lbfgs formula approximate the inverse of the Hessian by low-rank approximation and does not require to store the full Hessian or its inverse.
That's why the memory requirement is reduced and it is suitable for lare-scale problem.
More Answers (0)
See Also
Categories
Find more on Surrogate Optimization in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!