I have troubles in understanding how could I turn some data type sym variables into data type symfun, can anybody make it clear for me?

4 views (last 30 days)
% This program computes for the Tangent Line / Normal Line of a curve % about a given point
%define x for symbolic processing
syms x
%IDENTIFY the function f(x)
f(x) = (4*x^2-2*x+1);
%DETERMINE the point of tangency (This will be a random point)
x0=randi([-5,5])
%SOLVE for the Ordinate of the point of tangency
y0=f(x0); %Evaluate y given value fo x
y=73;
%FIND the slope function
yprime= diff(f,x) %Solve for the first derivative
%Determine the slope at the given x0
m=yprime(x0); %sym(-42); %Evaluate the slope
%Solve the equation of the tangent line
ytangent = -42*x+1/42
%Solve the Equation of the normal line
ynormal = 1/42*x+215/42
%DISPLAYING RESULTS
fprintf('The tangent line to f(x)=%s at (%.2f, %.2f) is y = %s \n',string(f(x)),x0,y0, string(ytangent))
fprintf('The normal line to f(x)=%s at (%.2f, %.2f) is y = %s \n',string(f(x)),x0,y0, string(ynormal))
%PLOTTING
g1=ezplot(f,[-15,15]);
set(g1,'color','b')
grid on
hold on
plot(x0,y0,'r*')
text(x0+1,y0,"Point of Tangency")
g2=ezplot(ytangent,[-15,15]);
text(5,5,["y(Tangent)=", string(ytangent)])
pause(1)
set(g2,'color','m')
pause(1)
g3=ezplot(ynormal,[-15,15]);
text(3,3,["y(Normal)=", string(ynormal)])
set(g3,'color','c');
title("Tangent Line and Normal Line")
Errors:
Variable m must be of data type symfun. It is currently of type sym. Check where the variable is assigned a value.
Variable ytangent must be of data type symfun. It is currently of type sym. Check where the variable is assigned a value.
Variable ynormal must be of data type symfun. It is currently of type sym. Check where the variable is assigned a value.
  4 Comments
Cris LaPierre
Cris LaPierre on 29 Mar 2023
Adding (x) will turn your sym variables into sym functions btw
syms x
f(x) = (4*x^2-2*x+1);
yprime= diff(f,x);
x0=randi([-5,5]);
m(x)=yprime(x0);
whos m
Name Size Bytes Class Attributes m 1x1 8 symfun

Sign in to comment.

Answers (1)

Walter Roberson
Walter Roberson on 29 Mar 2023
ytangent(x) = -42*x+1/42
%Solve the Equation of the normal line
ynormal(x) = 1/42*x+215/42

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!