I have created my own J2 Orbit Propagator and I am not sure why it is not working properly.
45 views (last 30 days)
Show older comments
I am writing a code to plot an orbit with considering the effects of the earths oblateness and I am having trouble getting it to work properly. I am not sure the problem exactly, but the x coordinates seem to jump at around the 3000 second mark. Also, when plotted in 3 dimensions there are lines that are bisecting the orbit indicating that the x or y values are not continues however plotted in 2 dimensions they look continues. I am fairly confused with what I did so any help would be appreciated. The code is below!
% Orbit calculator for j2 effects
% Ryan Goodridge
% 101147736
% ryangoodridge@cmail.carleton.ca
% Date performed: 03/10/2023
clc
close all;
clear all;
% Useful constants
Re = 6378; % radius of earth
u = 398600; % MU of earth it goes moo moo
d2r = pi/180; % rad/deg
J2 = 0.0010836;
% user defined orbital elements
a = Re + 750; % km
e = 0.0000001;
i = 80*d2r; % rad
tp = 0; % sec
RAAN = 270*d2r; % rad
w = 0*d2r; % rad
% Calculating the Orbit radius vector, velocity magnitude, and time
Orbit1 = Orbitcalc(a,e,i,w,RAAN,u,J2,Re); % Using orbit function to calculate the position of a spacecraft relitive to the time
r_P = [Orbit1(1,:); Orbit1(2,:); Orbit1(3,:)]; % retreving data from function
% first ECI point
C_IP = C3(Orbit1(7,1))*C1(Orbit1(8,1))*C3(Orbit1(9,1));
r_I = C_IP*r_P(:,1);
% creating a rotation matrix for perifocal to ECI
sz = size(Orbit1);
sz = sz(1,2);
for j = 2:1:sz
C_IP = C3(Orbit1(7,j))*C1(Orbit1(8,j))*C3(Orbit1(9,j));
r_I(:,end+1) = C_IP*r_P(:,j);
end
R = sqrt(Orbit1(1,:).^2 + Orbit1(2,:).^2);
figure
plot(Orbit1(10,:),R)
hold on
plot(Orbit1(10,:),Orbit1(11,:))
hold off
% Plot of orbit in parifocal
figure
plot(Orbit1(1,:),Orbit1(2,:))
hold on
plot(0,0,'g--o')
title('Orbit in Parifocal');
ylabel('Distance [m]');
xlabel('Distance [m]');
% testing to see what is wrong
figure
plot(Orbit1(10,:),Orbit1(1,:))
title('x v time')
figure
plot(Orbit1(10,:),Orbit1(2,:))
title('y v time')
% Plot of orbit in ECI
figure
plot3(r_I(1,:),r_I(2,:),r_I(3,:),'k','linewidth', 2)
grid on
hold on
% [xs,ys,zs]=sphere(50);
% xs = xs*Re;
% ys = ys*Re;
% zs = zs*Re;
% obj = surf(xs,ys,zs);
set(gca,'FontSize',9,'FontName', 'Times')
xlabel('rx_I (km)')
ylabel('ry_I (km)')
zlabel('rz_I (km)')
axis equal
% Orbit Propogator
function Orbitdata = Orbitcalc(a,e,i,w,RAAN,mu,J2,Re)
% initial calculations
T = (2*pi*a^(3/2))/(sqrt(mu)); % Period of orbit
Rp = a*(1 - e); % Radius of parigee
Ra = a + a*e; % Radius of Apsis
R = Ra; % inital position magnitude
% inital position components
R_x = Rp;
R_y = 0;
tol = 10^-8; %rad %% Tolerance of the orbit
V = sqrt(2*mu/R - mu/a); % Inital velocity
for t = 0:0.1:T-0.1
% inital calculations
p = a(end)*sqrt(1 - e(end)^2);
% Orbit calculations
M = 2*pi*t/T; % mean anomaly
E = CalcEA(M,e(end),tol); % eccentric anomaly
theta = 2*atan(sqrt((1+e(end))/(1-e(end)))*tan(E/2)); % true anomaly
R_mag = a(end)*(1-e(end)^2)/(1+e(end)*cos(theta)); % radius of orbit
% Orbital Perturbations
u = w(end) + theta;
f_r = (-3*mu*J2*(Re^2)*(1 - 3*(sin(i(1,end))*sin(i(1,end)))*(sin(u)*sin(u))))/(2*R_mag^4); % Eq 3.66
f_theta = ((-3*u*J2*(Re^2))/(2*(R_mag)^4))*((sin(i(1,end))*sin(i(1,end)))* (sin(2*u))); % Eq 3.67
f_Z = ((-3*u*J2*(Re^2))/(2*(R_mag)^4))*((sin(2*i(end)))*(sin(u))); % Eq 3.68
a_dot = ((2*a(end)^2)/(sqrt(p*mu)))*(e(end)*sin(theta)*f_r + (1 + e(end)*cos(theta))*f_theta); % Eq 3.15
e_dot = sqrt(p/mu)*(sin(theta)*f_r + (2*cos(theta) + e(end)*(1 + (cos(theta))^2))*f_theta/(1 + cos(theta))); % Eq 3.16
i_dot = sqrt(p/mu)*(sin(u)*f_Z/(1 + e(end)*cos(theta))); % eq 3.17
RAAN_dot = sqrt(p/mu)*(sin(u)*f_Z/(sin(i(end))*(1 + e(end)*cos(theta)))); % Eq 3.18
w_dot = sqrt(p/mu)*(-cos(theta)*f_r/e(end) + (2 + e(end)*cos(theta)*sin(theta))*f_theta/(e(end)*(1 + e(end)*cos(theta))) - sin(u)*f_Z/((1 + e(end)*cos(theta))*tan(i(end)))); % Eq 3.19
% Store Values
a(end+1) = a(end) + a_dot*0.1; % new values of a
e(end+1) = e(end) + e_dot*0.1; % new values of e
i(end+1) = i(end) + i_dot*0.1; % new values of i
RAAN(end+1) = RAAN(end) + RAAN_dot*0.1; % new values of RAAN
w(end+1) = w(end) + w_dot*0.1; % new values of w
R(end+1) = R_mag; % magnitude of position vector
R_x(end+1) = R_mag*cos(theta); % x compoent of radius
R_y(end+1) = R_mag*sin(theta); % y compoent of radius
V(end+1) = sqrt(2*((-mu/(2*a(end)))+(mu/R_mag))); % velocity of spacecraft
end
time = 0:0.1:T; % time
sz = size(R_x);
Z = zeros(sz); % z compoent of radius
Orbitdata = [R_x; R_y; Z; V; a; e; i; RAAN; w; time; R]; % output
end
% rotation matrix
function A = C1(x)
if nargin > 1
error('Too many inputs. See help file')
end
A = [ 1 0 0;
0 cos(x) -sin(x);
0 sin(x) cos(x)];
end
% rotation matrix
function A = C2(x)
if nargin > 1
error('Too many inputs. See help file')
end
A = [cos(x) 0 -sin(x);
0 1 0;
sin(x) 0 cos(x)];
end
% rotation matrix
function A = C3(x)
if nargin > 1
error('Too many inputs. See help file')
end
A = [cos(x) -sin(x) 0;
sin(x) cos(x) 0;
0 0 1];
end
% Orbit eccentric anomaly, Kepler's equation keplers equation
% Richard Rieber
% 1/23/2005
% rrieber@gmail.com
%
% Revision 8/21/07: Fixed typo in line 38 if statement
% Added H1 line for lookfor functionality
%
% function E = CalcEA(M,ecc,tol)
%
% Purpose: Solves for eccentric anomaly, E, from a given mean anomaly, M,
% and eccentricty, ecc. Performs a simple Newton-Raphson iteration
%
% Inputs: o M - Mean anomaly in radians.
% o ecc - Eccentricity of the orbit.
% o tol - a tolerance at which to terminate iterations; Default
% is 10^-8 radians. [OPTIONAL]
%
% Outputs: o E - The eccentric anomaly in radians.
%
% E = CalcEA(M,ecc) uses default tolerances
%
% E = CalcEA(M,ecc,tol) will use a user specified tolerance, tol
%
function E = CalcEA(M,ecc,tol)
%Checking for user inputed tolerance
if nargin == 2
%using default value
tol = 10^-8;
elseif nargin > 3
error('Too many inputs. See help CalcEA')
elseif nargin < 2
error('Too few inputs. See help CalcEA')
end
if (M > -pi && M < 0) || M > pi
E = M - ecc;
else
E = M + ecc;
end
Etemp = E + (M - E + ecc*sin(E))/(1-ecc*cos(E));
Etemp2 = E;
while abs(Etemp - Etemp2) > tol
Etemp = Etemp2;
Etemp2 = Etemp + (M - Etemp + ecc*sin(Etemp))/(1-ecc*cos(Etemp));
end
E = Etemp2;
end
0 Comments
Accepted Answer
Ashok
on 29 Oct 2024
Debugging is tricky without knowing the source of the 'Orbit Perturbation' equations mentioned in the code. However, applying a wrap function to the 'u' relation seems to resolve the discontinuity when using an integration time step of 0.1.
u = wrapTo2Pi(w(end) + theta);
Starting from MATLAB R2024a, the Satellite Communication Toolbox allows for plotting a satellite's orbit with the J2 effect. More details can be found here:
Here's a snippet that shows how to plot a satellite's orbit including the J2 effect.
startTime = datetime(2020,6,02,8,23,0);
stopTime = startTime + hours(5);
sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime,"AutoSimulate", true);
options = numericalPropagator(sc, "GravitationalPotentialModel", "oblate-ellipsoid");
sat = satellite(sc,"threeSatelliteConstellation_1.tle");
ele1 = orbitalElements(sat);
time = datetime(2020,6,02,12,30,0);
pos = states(sat,"CoordinateFrame","inertial");
plot3(pos(1,:), pos(2,:), pos(3,:))
axis equal
grid on
show(sat)
The ‘numericalPropagator’ object is used to set the ‘GravitationalPotentialModel’ to ‘oblate-ellipsoid’, instructing the Satellite Scenario to account for the J2 effect during simulation. For more information, check out this documentation page:
https://www.mathworks.com/help/releases/R2024a/aerotbx/ug/satellitescenario.numericalpropagator.html.
I believe this will assist you!
More Answers (0)
See Also
Categories
Find more on Satellite and Orbital Mechanics in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!