How to present (x(t))'', (θ(t))'' in symbolic version matlab?
11 views (last 30 days)
Show older comments
Matthew Worker
on 6 Feb 2023
Answered: Walter Roberson
on 6 Feb 2023
There are six equations below (M, m, g, b, L, J are constant):
M*(x(t))'' = F(t) - N(t) - b*(x(t))'
J*(θ(t))'' = P(t)*sin(θ(t))*(L/2) - N(t)*cos(θ(t))*(L/2)
m*(xp(t))'' = N(t)
m*(yp(t))'' = P(t) - mg
xp(t) = x(t) +(L/2)*sin(θ(t))
yp(t) = (L/2)*cos(θ(t))
I want to combine and simplify these 6 symbolic equations into 2 symbolic euqations only presented by x(t), θ(t) and F(t).
However, I do not know how to show the (x(t))'', (θ(t))'' in symbolic version. Can anyone help me with it?
syms x(t)?
0 Comments
Accepted Answer
Walter Roberson
on 6 Feb 2023
syms b J g L M m
syms F(t) N(t) P(t) theta(t) x(t) xp(t) yp(t)
x_prime = diff(x);
x_dprime = diff(x_prime);
theta_prime = diff(theta)
theta_dprime = diff(theta_prime);
xp_prime = diff(xp);
xp_dprime = diff(xp_prime);
yp_prime = diff(yp);
yp_dprime = diff(yp_prime);
eqn1 = M*xp_dprime == F - N - b*x_prime
eqn2 = J*theta_dprime == P*sin(theta)*(L/2) - N * cos(theta)*(L/2)
eqn3 = m*xp_dprime == N
eqn4 = m*yp_dprime == P - m*g
eqn5 = xp == x + (L/2)*sin(theta)
eqn6 = yp == (L/2)*cos(theta)
0 Comments
More Answers (0)
See Also
Categories
Find more on Symbolic Math Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!