Converting MatLAB Code to Matplotlib
28 views (last 30 days)
Show older comments
Is there a way to convert the following MATLAB code to python code with matplotlib?
function [fitresult, gof] = createFit(x, y, z)
%CREATEFIT(X,Y,Z)
% Create a fit.
%
% Data for 'untitled fit 1' fit:
% X Input: x
% Y Input: y
% Z Output: z
% Output:
% fitresult : a fit object representing the fit.
% gof : structure with goodness-of fit info.
%
% See also FIT, CFIT, SFIT.
% Auto-generated by MATLAB on 31-Dec-2022 13:53:58
%% Fit: 'untitled fit 1'.
[xData, yData, zData] = prepareSurfaceData( x, y, z );
% Set up fittype and options.
ft = fittype( 'poly22' );
opts = fitoptions( 'Method', 'LinearLeastSquares' );
opts.Normalize = 'on';
opts.Robust = 'Bisquare';
% Fit model to data.
[fitresult, gof] = fit( [xData, yData], zData, ft, opts );
% Plot fit with data.
figure( 'Name', 'untitled fit 1' );
h = plot( fitresult, [xData, yData], zData );
legend( h, 'untitled fit 1', 'z vs. x, y', 'Location', 'NorthEast', 'Interpreter', 'none' );
% Label axes
xlabel( 'x', 'Interpreter', 'none' );
ylabel( 'y', 'Interpreter', 'none' );
zlabel( 'z', 'Interpreter', 'none' );
grid on
0 Comments
Accepted Answer
Naeimeh N
on 31 Dec 2022
You can convert any piece of matlab code to python. In this case you can use the scipy.optimize.curve_fit function to fit a polynomial curve to the data, and then use the matplotlib library to plot the results.
0 Comments
More Answers (0)
See Also
Categories
Find more on Linear and Nonlinear Regression in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!