How to calculate double integral?

3 views (last 30 days)
Hexe
Hexe on 16 Dec 2022
Commented: Hexe on 16 Dec 2022
Hi! I have a problem with solution of double integral. The syms solves too long and it cannot be used.But in another way I have problem.
I have an integral fun2 on z and it has x which is a variable in the integral fun0. How can I set a variable x to first calculate the integral f2 over z, and then integral f3 over x? (Of course, when I set x=some number I obtain a curve or a set of curves if x=0:0.1:1 and make for j = 1:length(x), but I doubt about this result, because the behavior of curves is not correct).
clear all, close all
n=1;
t=1;
r=1;
s=0:0.2:10;
for i = 1:length(s)
k=s(i);
fun2=@(z)(z.*exp(2.*n.*t.*z.^2).*(besselj(0,(k.*z.*x)))./sqrt(1-z.^2));
f2(i,:)=integral(fun2,0,1);
fun0=@(x)(((((x.^2.*exp(-2.*t.*x.^2)./(x.^2+1/(r.^2)).^2)))).*f2(i));
f3(i,:)=integral(fun0,0,inf);
end
Cor=8/(r*(pi)^(3/2))*sqrt(2*n*t)*exp(-2*n*t)/(erf(sqrt(2*n*t))*((1+4*t/r^2)*exp(2*t/r^2)*erfc(sqrt(2*t/r^2))-2*sqrt(2*t)/(r*sqrt(pi)))).*f3;
plot(s,Cor,'b-');

Accepted Answer

Torsten
Torsten on 16 Dec 2022
Edited: Torsten on 16 Dec 2022
n = 1 ;
t = 1;
r = 1;
s = 0:0.2:10;
fun = @(x,z,k) x.^2.*exp(-2.*t.*x.^2)./(x.^2+1/r^2).^2 .* z.*exp(2*n*t.*z.^2).*besselj(0,k.*z.*x)./sqrt(1-z.^2);
f3 = arrayfun(@(k)integral2(@(x,z)fun(x,z,k),0,Inf,0,1),s)
f3 = 1×51
0.2959 0.2948 0.2915 0.2860 0.2784 0.2690 0.2579 0.2454 0.2316 0.2169 0.2015 0.1857 0.1697 0.1538 0.1381 0.1229 0.1083 0.0945 0.0815 0.0694 0.0583 0.0483 0.0392 0.0311 0.0240 0.0177 0.0123 0.0077 0.0038 0.0005
Cor = 8/(r*(pi)^(3/2))*sqrt(2*n*t)*exp(-2*n*t)/(erf(sqrt(2*n*t))*((1+4*t/r^2)*exp(2*t/r^2)*erfc(sqrt(2*t/r^2))-2*sqrt(2*t)/(r*sqrt(pi))))*f3
Cor = 1×51
1.0000 0.9962 0.9849 0.9663 0.9409 0.9091 0.8716 0.8292 0.7828 0.7331 0.6811 0.6276 0.5735 0.5196 0.4667 0.4153 0.3659 0.3192 0.2753 0.2346 0.1972 0.1631 0.1324 0.1051 0.0809 0.0598 0.0416 0.0259 0.0127 0.0017
plot(s,Cor,'b-')
grid on
  1 Comment
Hexe
Hexe on 16 Dec 2022
Dear Torsten, thank you very much :) It solves my problem and now I will know what to do with integrals like these.

Sign in to comment.

More Answers (0)

Categories

Find more on Thermodynamics & Statistical Physics in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!