Finding roots of a two variable function

5 views (last 30 days)
Chaitanya
Chaitanya on 11 Dec 2022
Moved: Walter Roberson on 14 Dec 2022
Basically I have x which is a column vector with 350 rows of random data. I need to model this as a Birnbaum Sauders distribution and estimate its parameters. I can do this directly using the mle function, but I wonder if its possible to use fsolve. Below is my function file.
function f = BirnbaumSaunders(alpha,lamb)
F = (alpha.^2)-((1/350)*sum((lamb.*x)+(1./(lamb.*x))-2));
G = (-175.*lamb)+((1./(2.*(alpha.^2)))*sum(((lamb.*lamb.*x))-(1./x))+sum(lamb./((lamb.*x)+1)));
end
Here, I have to find the value of alpha and lamb for which both my functions F and G are zero. I have tried using the fsolve with initial alpha and lamb values as 0.65 and 2.13 (I got these values after using the mle function). But I'm getting an error using fsolve.
fun = @BirnbaumSaunders;
x = fsolve(fun,[0.65,2.13])
This is giving me an error. Is there any other way to find the values of alpha and lamb when F and G are set to 0?

Answers (2)

Torsten
Torsten on 12 Dec 2022
x = rand(10,1);
fun = @(z)BirnbaumSaunders(z(1),z(2),x);
z = fsolve(fun,[0.65,2.13])
Solver stopped prematurely. fsolve stopped because it exceeded the function evaluation limit, options.MaxFunctionEvaluations = 2.000000e+02.
z = 1×2
0.1961 -1.1427
norm(fun(z))
ans = 0.1632
function f = BirnbaumSaunders(alpha,lamb,x)
F = (alpha.^2)-((1/350)*sum((lamb.*x)+(1./(lamb.*x))-2));
G = (-175.*lamb)+((1./(2.*(alpha.^2)))*sum(((lamb.*lamb.*x))-(1./x))+sum(lamb./((lamb.*x)+1)));
f = [F;G];
end
  5 Comments
Chaitanya
Chaitanya on 12 Dec 2022
Edited: Chaitanya on 12 Dec 2022
I got a correct value using this data and your code!!! Thank you very much for your time!
Torsten
Torsten on 12 Dec 2022
You want to estimate two parameters of a distribution given seven realizations ? That's ... courageous.

Sign in to comment.


Walter Roberson
Walter Roberson on 14 Dec 2022
Moved: Walter Roberson on 14 Dec 2022
format long g
x = [
0.260594
0.50998
0.609437
0.365165
0.949793
0.590385
0.902765];
fun = @(z)BirnbaumSaunders(z(1),z(2),sym(x));
syms z [1 2]
F = simplify(fun(z))
F = 
sol = vpasolve(F,[0.65;2.13])
sol = struct with fields:
z1: [16×1 sym] z2: [16×1 sym]
vpa(subs(z, sol))
ans = 
subs(F, sol)
ans = 
fun = @(z)BirnbaumSaunders(z(1),z(2),x);
opt = optimoptions('fsolve', 'MaxFunctionEvaluations', 1e4);
Z = fsolve(fun,[0.06,2], opt)
Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient.
Z = 1×2
0.0630815494828271 2.00076854993031
function f = BirnbaumSaunders(alpha,lamb,x)
F = (alpha.^2)-((1/350)*sum((lamb.*x)+(1./(lamb.*x))-2));
G = (-175.*lamb)+((1./(2.*(alpha.^2)))*sum(((lamb.*lamb.*x))-(1./x))+sum(lamb./((lamb.*x)+1)));
f = [F;G];
end

Categories

Find more on Deep Learning Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!