My simulation doesn't take into account the different height of the Faraday waves?
    5 views (last 30 days)
  
       Show older comments
    
Could you please tell me why the following plot doesn't give a correct plotting of the different heights of the Faraday waves? Thanks a lot!
% Define physical parameters
g = 9.81; % acceleration due to gravity
d = 0.1; % fluid depth
omega = 0.1; % forcing frequency
% Define grid parameters
Nx = 100; % number of x grid points
Ny = 100; % number of y grid points
Lx = 1; % length of x dimension
Ly = 1; % length of y dimension
dx = Lx/Nx; % grid spacing in x direction
dy = Ly/Ny; % grid spacing in y direction
[x, y] = meshgrid(dx/2:dx:Lx-dx/2, dy/2:dy:Ly-dy/2); % grid
% Define initial conditions
u = zeros(Nx, Ny); % x-velocity
v = zeros(Nx, Ny); % y-velocity
h = zeros(Nx, Ny); % surface height
% Define forcing function
F = @(t) 0.1*sin(omega*t);
% Define time-stepping parameters
dt = 0.001; % time step
tmax = 10; % maximum time
t = 0:dt:tmax; % time vector
% Perform time-stepping
for ii = 1:length(t)
    % Loop through grid points, updating surface height and velocities
    for jj = 1:Nx
        for kk = 1:Ny
            % Calculate acceleration using equations of motion
            a_x = -g*h(jj,kk)*sin(h(jj,kk)) - g/2*(u(jj,kk)^2 + v(jj,kk)^2) + F(t(ii));
            a_y = -g*h(jj,kk)*sin(h(jj,kk)) - g/2*(u(jj,kk)^2 + v(jj,kk)^2) + F(t(ii));
            % Update velocities
            u(jj,kk) = u(jj,kk) + a_x*dt;
            v(jj,kk) = v(jj,kk) + a_y*dt;
            % Update surface height
            h(jj,kk) = h(jj,kk) + dt*(u(jj,kk)*v(jj,kk) - g/2*h(jj,kk)^2);
        end
    end
end
% Plot results
figure;
mesh(x, y, h);
xlabel('x');
ylabel('y');
zlabel('surface height');
0 Comments
Accepted Answer
  VBBV
      
      
 on 7 Jan 2023
        % Define physical parameters
g = 9.81; % acceleration due to gravity
d = 0.1; % fluid depth
omega = 0.1; % forcing frequency
% Define grid parameters
Nx = 100; % number of x grid points
Ny = 100; % number of y grid points
Lx = 1; % length of x dimension
Ly = 1; % length of y dimension
dx = Lx/Nx; % grid spacing in x direction
dy = Ly/Ny; % grid spacing in y direction
[x, y] = meshgrid(dx/2:dx:Lx-dx/2, dy/2:dy:Ly-dy/2); % grid
% Define initial conditions
u = zeros(Nx, Ny); % x-velocity
v = zeros(Nx, Ny); % y-velocity
h = zeros(Nx, Ny); % surface height
% Define forcing function
F = @(t) 0.1*sin(omega*t);
% Define time-stepping parameters
dt = 0.1; % time step
tmax = 1; % maximum time
t = 0:dt:tmax; % time vector
% Perform time-stepping
for ii = 1:length(t)
    % Loop through grid points, updating surface height and velocities
    for jj = 1:Nx-1
        for kk = 1:Ny-1
            % Calculate acceleration using equations of motion
            a_x = -g*h(jj,kk)*sin(h(jj,kk)) - g/2*(u(jj,kk)^2 + v(jj,kk)^2) + F(t(ii));
            a_y = -g*h(jj,kk)*sin(h(jj,kk)) - g/2*(u(jj,kk)^2 + v(jj,kk)^2) + F(t(ii));
            % Update velocities
            u(jj+1,kk+1) = u(jj,kk) + a_x*dt;
            v(jj+1,kk+1) = v(jj,kk) + a_y*dt;
            % Update surface height
            h(jj+1,kk+1) = h(jj,kk) + dt*(u(jj,kk)*v(jj,kk) - g/2*h(jj,kk)^2);
        end
    end
    nexttile 
    mesh(x, y, h);
    xlabel('x');
    ylabel('y');
    zlabel('h');
    title(sprintf('t=%0.1ds',t(ii)));     % at different times 
    %view(45,90)
end
2 Comments
  VBBV
      
      
 on 7 Jan 2023
				
      Edited: VBBV
      
      
 on 7 Jan 2023
  
			update the velocities at each dependent grid step, as 
u(jj+1,kk+1) = u(jj,kk) + a_x*dt;
v(jj+1,kk+1) = v(jj,kk) + a_y*dt;
% Update surface height
h(jj+1,kk+1) = h(jj,kk) + dt*(u(jj,kk)*v(jj,kk) - g/2*h(jj,kk)^2);
it seems you were trying to compute wave heights at discrete time steps independently 
More Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

