The size of X must match the size of Z or the number of columns of Z.

2 views (last 30 days)
i'am trying to solve 2d laplace equation using fourth order central difference could but i'am getting an error:The size of X must match the size of Z or the number of columns of Z, During plotting. could someone help me here.
My code is:
clear all
close all
clc
% % geometry of domain
Nx = 102;
Ny = 102;
dx = 1.01/(Nx-1);
dy = 1.01/(Ny-1);
X = 0:dx:1;
Y = 0:dy:1;
% % initial condition
T = zeros(Nx,Ny);
T(50,20) = 2.5;
T(25,25) = -0.5;
T(75,10) = -2.5;
% % boundary condition
TL = 1;
TR = cos(6*(3*pi*Y)/2)+1;
TT = 1;
TB = 1+X;
T(:,1) = TL;
T(Ny,:) = TT;
T(:,Nx) = TR(Nx-1);
T(1,:) = TB(1);
T(:,2) = TL;
T(Ny-1,:) = TT;
T(2,:) = TB(2);
T(:,Nx-1) = TR(Nx-1);
T_new(Nx,Ny) = 0;
TL = 1;
TR = cos(6*(3*pi*Y)/2)+1;
TT = 1;
TB = 1+X;
T_new(:,1) = TL;
T_new(Ny,:) = TT;
T_new(:,Nx) = TR(Nx-1);
T_new(1,:) = TB(1);
T_new(:,2) = TL;
T_new(Ny-1,:) = TT;
T_new(2,:) = TB(2);
T_new(:,Nx-1) = TR(Nx-1);
error_mag = 3;
error_req = 1e-03;
iteration = 0;
% % calculation
while error_mag > error_req
for i = 3:Nx-2
for j=3:Ny-2
T_new(i,j) = (16*T(i+1,j)+16*T(i-1,j)-T(i-2,j)-T(i+2,j)-T(i,j+2)+16*T(i,j+1)+16*T(i,j-1)-T(i,j-2))/60; % fourth order central difference
T_new(50,20) = 2.5;
T_new(25,25) = -0.5;
T_new(75,10) = -2.5;
TL = 1;
TR = cos(6*(3*pi*Y)/2)+1;
TT = 1;
TB = 1+X;
T_new(:,1) = TL;
T_new(Ny,:) = TT;
T_new(:,Nx) = TR(Nx-1);
T_new(1,:) = TB(1);
T_new(:,2) = TL;
T_new(Ny-1,:) = TT;
T_new(2,:) = TB(2);
T_new(:,Nx-1) = TR(Nx-1);
iteration = iteration +1;
end
end
% calculation of error magnitude
for i= 3:Nx-2
for j = 3:Ny-2
error_mag = abs(T(i,j)-T_new(i,j));
end
end
%assigning new to old
T = T_new;
end
% % plotting
[x,y] = meshgrid(X,Y);
colormap("jet");
contourf(X,Y,T');
Error using contourf
The size of X must match the size of Z or the number of columns of Z.
colorbar

Accepted Answer

Torsten
Torsten on 23 Nov 2022
Change
dx = 1.01/(Nx-1);
dy = 1.01/(Ny-1);
to
dx = 1.0/(Nx-1);
dy = 1.0/(Ny-1);
  10 Comments
Torsten
Torsten on 23 Nov 2022
T_new(i,j) = (T(i+1,j)+T(i-1,j)+T(i,j+1)+T(i,j-1))/4; % second order central difference
for i = 2, 2 <= j <= Ny-1
for j = 2, 2 <= i <= Nx-1
for i = Nx-1, 2<=j <= Ny-1
for j = Ny-1, 2<= i <= Nx-1

Sign in to comment.

More Answers (1)

Voss
Voss on 23 Nov 2022
The error happens because T is a 102-by-102 matrix but X and Y only have 101 elements:
% % geometry of domain
Nx = 102;
Ny = 102;
dx = 1.01/(Nx-1);
dy = 1.01/(Ny-1);
X = 0:dx:1;
Y = 0:dy:1;
% % initial condition
T = zeros(Nx,Ny);
whos X Y T
Name Size Bytes Class Attributes T 102x102 83232 double X 1x101 808 double Y 1x101 808 double

Categories

Find more on Configure Simulation Conditions in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!