How to find coordinates of intersecting line?
1 view (last 30 days)
Show older comments
Hi, I have plot which is shown below and there is black (dashed) vertical line in x axis at 3. I need to find the coordinates of intersection between black line and red curve.
clear all; close all;
fs= 8192*2; % sampling frequency
dt = 1/fs; % sample time
T=5; % duration of the signal
Nt = T*fs; % total number of samples
t = 0:dt:T-dt; % time vector
% Source definition
f0 = 1; % frequency at time t = 0s
f1 = 5; % freqeuncy at time t = T
%-------------------------------------------------------
beta = (f1-f0)/T; % beta
finst = f0+beta*t.'; % instantaneous frequency
phi = 2*pi*cumsum(finst)*dt;
figure()
plot(wrapTo2Pi(phi),t,'r');
hold on
xline(3,'--k')
xlabel('phase')
ylabel('s')
0 Comments
Accepted Answer
Matt J
on 20 Nov 2022
Edited: Matt J
on 20 Nov 2022
fs= 8192*2; % sampling frequency
dt = 1/fs; % sample time
T=5; % duration of the signal
Nt = T*fs; % total number of samples
t = 0:dt:T-dt; % time vector
% Source definition
f0 = 1; % frequency at time t = 0s
f1 = 5; % freqeuncy at time t = T
%-------------------------------------------------------
beta = (f1-f0)/T; % beta
finst = f0+beta*t.'; % instantaneous frequency
phi = 2*pi*cumsum(finst)*dt;
figure()
plot(wrapTo2Pi(phi),t,'r');
hold on
xline(3,'--k')
xlabel('phase')
ylabel('s')
hold off
z=wrapTo2Pi(phi(:)).';
n=nnz(diff(z)<-pi);
tc=interp1(phi,t,3+2*pi*(0:n) );
pc=0*tc+3;
hold on; plot(pc,tc,'xb'); hold off
0 Comments
More Answers (1)
Torsten
on 20 Nov 2022
fs= 8192*2; % sampling frequency
dt = 1/fs; % sample time
T=5; % duration of the signal
Nt = T*fs; % total number of samples
t = 0:dt:T-dt; % time vector
% Source definition
f0 = 1; % frequency at time t = 0s
f1 = 5; % freqeuncy at time t = T
%-------------------------------------------------------
beta = (f1-f0)/T; % beta
finst = f0+beta*t.'; % instantaneous frequency
phi = 2*pi*cumsum(finst)*dt;
phase = wrapTo2Pi(phi);
n = numel(phase);
v = (phase(1:n-1)-3).*(phase(2:n)-3);
idx = v <= 0;
coordinates = t(idx);
figure()
plot(phase,t,'r');
hold on
xline(3,'--k')
xlabel('phase')
ylabel('s')
plot(3*ones(size(coordinates)),coordinates,'o')
hold off
2 Comments
Matt J
on 20 Nov 2022
I wonder if the jump discontinuity lines are to be considered part of the curve.
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!