Implementing numerical method for PDE
5 views (last 30 days)
Show older comments
Hello
I am trying to solve the following PDE with intital and boundary conditions such that . I used the second order centered finite difference discrtization for and then want solve the ode system using ode15s
Here is my attempt. When I plot the solution obtained from ode15s and compare it to the exact solution they are different. I am not if I made a mistake somewhere. Help is really appreciated
clc,clear,close all
% parameters
t0 = 0;
T = 1.0;
tspan = [t0 T];
xl = 0;
xr = 1;
m = 20;
x = linspace(xl,xr,m + 1);
dx = 1/m;
Uexact = @(t,x) exp(1i*(x-t));
% initial conditions
U0 = Uexact(0,x)';
U0 = U0(2:end-1);
% solve
fn = @(t,U) ODE(t,U,m,dx);
opts = odeset('RelTol',1e-13, 'AbsTol',1e-15);
[t,U] = ode15s(fn, tspan, U0, opts);
%compare with exact solution
plot(x(2:end-1),U(end,:))
hold on
plot(x(2:end-1),Uexact(T,x(2:end-1)))
function dUdt = ODE(t,U,m,dx)
A = eye(m-1);
A = A * (-2);
A = A + diag(ones(m-2,1),1);
A = A + diag(ones(m-2,1),-1);
A = (1/dx^2) * A;
g = zeros(m-1,1);
g(1) = g(1) + (1/dx^2) * exp(1i*(-1*t));
g(end) = g(end) + (1/dx^2) * exp(1i*(1-t));
dUdt = (1i) * (A*U) + g;
end
Thanks
2 Comments
Accepted Answer
Davide Masiello
on 13 Oct 2022
Edited: Davide Masiello
on 13 Oct 2022
clear,clc
tspan = [0 1];
N = 100;
x = linspace(0,1,N);
dx = 1/(N-1);
Uexact = @(t,x) exp(1i*(x-t));
U0 = Uexact(0,x);
M = eye(N);
M(1,1) = 0;
M(N,N) = 0;
opts = odeset('Mass',M,'MassSingular','yes');
[t,U] = ode15s(@(t,U)yourPDE(t,U,N,dx), tspan, U0, opts);
plot(x,real(U(end,:)),'k',x(1:4:end),real(Uexact(1,x(1:4:end))),'r.')
xlabel('x')
ylabel('U')
title('At final time')
legend('Numerical','Exact','Location','Best')
plot(x,real(U(1:3:end,:)),'k',x(1:3:end),real(Uexact(t(1:3:end),x(1:3:end))),'r.')
xlabel('x')
ylabel('U')
title('At several times')
function dUdt = yourPDE(t,U,N,dx)
dUdt(1,1) = U(1)-exp(-1i*t);
dUdt(2:N-1,1) = 1i*(U(1:end-2)-2*U(2:end-1)+U(3:end))/dx^2;
dUdt(N,1) = U(end)-exp(1i*(1-t));
end
0 Comments
More Answers (0)
See Also
Categories
Find more on Eigenvalue Problems in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!