Error using semanticSegmentationMetrics The categorical data returned by dsResults and dsTruth must have the same categories.
2 views (last 30 days)
Show older comments
I used the documentation to evaluate my results but I get this error, can someone tell me what's wrong please
Evaluating semantic segmentation results
----------------------------------------
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 0 images.Error using semanticSegmentationMetrics>iAssertCategoricalsHaveSameCategories
The categorical data returned by dsResults and dsTruth must have the same
categories.
my code is below
dataSetDir = fullfile('LungTS','preprocessedDataset');
testImagesDir = fullfile(dataSetDir,'imagesTest');
imdReader = @(x) matRead(x);
imds = imageDatastore(testImagesDir, ...
'FileExtensions','.mat','ReadFcn',imdReader);
%imds = imageDatastore(testImagesDir);
classNames = ["nodule" "background"];
labelIDs = [255 0];
labelReader = @(x) matRead(x);
testLabelsDir = fullfile(dataSetDir,'labelsTest');
pxdsTruth = pixelLabelDatastore(testLabelsDir,classNames,labelIDs, ...
'FileExtensions','.mat','ReadFcn',labelReader);
net = load('trained3DUNet-16-Sep-2022-14-34-13-Epoch-250.mat');
net = net.net;
pxdsResults = semanticseg(imds,net,"WriteLocation",tempdir);
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth);
metrics.ClassMetrics
metrics.ConfusionMatrix
cm = confusionchart(metrics.ConfusionMatrix.Variables, ...
classNames, Normalization ='row-normalized');
cm.Title = 'Normalized Confusion Matrix (%)';
imageIoU = metrics.ImageMetrics.MeanIoU;
figure
histogram(imageIoU)
title('Image Mean IoU')
[minIoU, worstImageIndex] = min(imageIoU);
minIoU = minIoU(1);
worstImageIndex = worstImageIndex(1);
worstTestImage = readimage(imds,worstImageIndex);
worstTrueLabels = readimage(pxdsTruth,worstImageIndex);
worstPredictedLabels = readimage(pxdsResults,worstImageIndex);
worstTrueLabelImage = im2uint8(worstTrueLabels == classNames(1));
worstPredictedLabelImage = im2uint8(worstPredictedLabels == classNames(1));
worstMontage = cat(4,worstTestImage,worstTrueLabelImage,worstPredictedLabelImage);
worstMontage = imresize(worstMontage,4,"nearest");
figure
montage(worstMontage,'Size',[1 3])
title(['Test Image vs. Truth vs. Prediction. IoU = ' num2str(minIoU)])
[minIoU, worstImageIndex] = min(imageIoU);
minIoU = minIoU(1);
worstImageIndex = worstImageIndex(1);
worstTestImage = readimage(imds,worstImageIndex);
worstTrueLabels = readimage(pxdsTruth,worstImageIndex);
worstPredictedLabels = readimage(pxdsResults,worstImageIndex);
worstTrueLabelImage = im2uint8(worstTrueLabels == classNames(1));
worstPredictedLabelImage = im2uint8(worstPredictedLabels == classNames(1));
worstMontage = cat(4,worstTestImage,worstTrueLabelImage,worstPredictedLabelImage);
worstMontage = imresize(worstMontage,4,"nearest");
figure
montage(worstMontage,'Size',[1 3])
title(['Test Image vs. Truth vs. Prediction. IoU = ' num2str(minIoU)])
[maxIoU, bestImageIndex] = max(imageIoU);
maxIoU = maxIoU(1);
bestImageIndex = bestImageIndex(1);
bestTestImage = readimage(imds,bestImageIndex);
bestTrueLabels = readimage(pxdsTruth,bestImageIndex);
bestPredictedLabels = readimage(pxdsResults,bestImageIndex);
bestTrueLabelImage = im2uint8(bestTrueLabels == classNames(1));
bestPredictedLabelImage = im2uint8(bestPredictedLabels == classNames(1));
bestMontage = cat(4,bestTestImage,bestTrueLabelImage,bestPredictedLabelImage);
bestMontage = imresize(bestMontage,4,"nearest");
figure
montage(bestMontage,'Size',[1 3])
title(['Test Image vs. Truth vs. Prediction. IoU = ' num2str(maxIoU)])
evaluationMetrics = ["accuracy" "iou"];
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth,"Metrics",evaluationMetrics);
metrics.ClassMetrics
0 Comments
Answers (1)
Birju Patel
on 6 Oct 2022
Check the categories of the data coming out of pxdsResults and pxdsTruth:
A = read(pxdsResults);
categories(A{1})
B = read(pxdsTruth);
categories(B{1})
The error message suggests that these are not the same.
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!