how solve nonlinear equations ?
1 view (last 30 days)
Show older comments
how to solve nonlinear equations ?
these 9 equations in 3 unknown but nonlinear
31.65951=sqrt((20460991.052399-x)^2+(11012393.207537-y)^2+(13140061.841029-z)^2)-sqrt((20462649.31-x)^2+(11012196.356-y)^2+(13137623.266-z)^2) 243.75898=sqrt((1704791.07688-x)^2+(20550181.098118-y)^2+(16863812.406607-z)^2)-sqrt((1706135.95-x)^2+(20548561.881-y)^2+(16865760.323-z)^2) -349.85327=sqrt((18327975.818007-x)^2+(1722639.77547-y)^2+(18786981.252914-z)^2)-sqrt((18326680.829-x)^2+(1720514.194-y)^2+(18788376.839-z)^2) -575.16382=sqrt((12050174.649623-x)^2+(-9980816.456693-y)^2+(21382458.132242-z)^2)-sqrt((12049062.298-x)^2+(-9983309.044-y)^2+(21381885.534-z)^2) 441.83588=sqrt((6415962.553149-x)^2+(15826350.755284-y)^2+(20754833.300093-z)^2)-sqrt((6418526.123-x)^2+(15826408.315-y)^2+(20754019.037-z)^2) -255.03605=sqrt((18966834.575125-x)^2+(6395897.26812-y)^2+(17720969.794907-z)^2)-sqrt((18965851.475-x)^2+(6393896.947-y)^2+(17722730.048-z)^2) 258.29132=sqrt((26283508.487939-x)^2+(-1051136.220342-y)^2+(4730820.234619-z)^2)-sqrt((26282933.567-x)^2+(-1051377.055-y)^2+(4733941.445-z)^2) -550.04848=sqrt((15456741.418182-x)^2+(19573966.047127-y)^2+(-9158923.170409-z)^2)-sqrt((15456435.97-x)^2+(19572808.522-y)^2+(-9161842.101-z)^2) 549.43288=sqrt((25702282.7043-x)^2+(2962424.062583-y)^2+(-6373870.064627-z)^2)-sqrt((25703029.058-x)^2+(2962107.626-y)^2+(-6370839.228-z)^2) but when using solve function [x,y,z] = solve('sqrt((20460991.052399-x)^2+(11012393.207537-y)^2+(13140061.841029-z)^2)-sqrt((20462649.31-x)^2+(11012196.356-y)^2+(13137623.266-z)^2)=31.65951', 'sqrt((1704791.07688-x)^2+(20550181.098118-y)^2+(16863812.406607-z)^2)-sqrt((1706135.95-x)^2+(20548561.881-y)^2+(16865760.323-z)^2)=243.75898', 'sqrt((18327975.818007-x)^2+(1722639.77547-y)^2+(18786981.252914-z)^2)-sqrt((18326680.829-x)^2+(1720514.194-y)^2+(18788376.839-z)^2)=-349.85327', 'sqrt((12050174.649623-x)^2+(-9980816.456693-y)^2+(21382458.132242-z)^2)-sqrt((12049062.298-x)^2+(-9983309.044-y)^2+(21381885.534-z)^2)=-575.16382', 'sqrt((6415962.553149-x)^2+(15826350.755284-y)^2+(20754833.300093-z)^2)-sqrt((6418526.123-x)^2+(15826408.315-y)^2+(20754019.037-z)^2)=441.83588', 'sqrt((18966834.575125-x)^2+(6395897.26812-y)^2+(17720969.794907-z)^2)-sqrt((18965851.475-x)^2+(6393896.947-y)^2+(17722730.048-z)^2)=-255.03605', 'sqrt((26283508.487939-x)^2+(-1051136.220342-y)^2+(4730820.234619-z)^2)-sqrt((26282933.567-x)^2+(-1051377.055-y)^2+(4733941.445-z)^2)=258.29132', 'sqrt((15456741.418182-x)^2+(19573966.047127-y)^2+(-9158923.170409-z)^2)-sqrt((15456435.97-x)^2+(19572808.522-y)^2+(-9161842.101-z)^2)=-550.04848', 'sqrt((25702282.7043-x)^2+(2962424.062583-y)^2+(-6373870.064627-z)^2)-sqrt((25703029.058-x)^2+(2962107.626-y)^2+(-6370839.228-z)^2)=549.43288')
the solution was empty x = [ empty sym ] y = [] z = []
why???????????????????/
5 Comments
Erik S.
on 18 Feb 2015
Since it is an overdetermined system (more equations than variables) is it a least squars solution you need or what do you mean by solution?
Accepted Answer
Erik S.
on 18 Feb 2015
Look in the documentation for the function lsqnonlin
It can solve nonlinear least squares problems.
0 Comments
More Answers (0)
See Also
Categories
Find more on Surrogate Optimization in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!