Deterministic SEIR ODE model running slow
3 views (last 30 days)
Show older comments
Gbeminiyi Oyedele
on 30 Aug 2022
Commented: Gbeminiyi Oyedele
on 30 Aug 2022
Good Afternoon,
I am running an ODE extended SEIR risk based model and it is running exceptionally slow. I am runnig 100 time steps and I expect it to be done in less then 5seconds but it is taking over 2 hours without running.
This is the ODE code:
%ODE SI model code
function [Classes] = ODE_SEIR_adhe(para,ICs,maxtime)
%Run ODE using ODE45
opts = odeset('RelTol',1e-2);
[t, pop] = ode45(@diff_SEIR_adhe, [0:maxtime], [ICs.S ICs.E ICs.I ICs.A ICs.H ICs.R ICs.Sa ICs.Ea ICs.Ia ICs.Aa ICs.Ha ICs.Ra],opts, para);
%Convert output to structure
Classes = struct('S',pop(:,1),'E',pop(:,2),'I',pop(:,3),'A',pop(:,4),'H',pop(:,5),'R',pop(:,6), ...
'Sa',pop(:,7),'Ea',pop(:,8),'Ia',pop(:,9),'Aa',pop(:,10),'Ha',pop(:,11),'Ra',pop(:,12),'t',t);
%Diff equations
function dPop = diff_SEIR_adhe(t,pop,para)
S=pop(1);
E=pop(2);
I=pop(3);
A=pop(4);
H=pop(5);
R=pop(6);
Sa=pop(7);
Ea=pop(8);
Ia=pop(9);
Aa=pop(10);
Ha=pop(11);
Ra=pop(12);
%The Non-adherent population
dS = - ((para.beta0(1,1))*S*I + (para.beta0(1,2))*S*Ia)/para.Np-para.gamma*S+para.gamma_a*Sa;
dE = ((para.beta0(1,1))*S*I + (para.beta0(1,2))*S*Ia)/para.Np- para.sigma*E-para.gamma*E+para.gamma_a*Ea;
dI = para.omega*para.sigma*E - para.mu_0*I -para.eta*I - para.gamma*I +para.gamma_a*Ia ;
dA = (1-para.omega)*para.sigma*E - para.mu_1*A - para.gamma*A +para.gamma_a*Aa;
dH = para.eta*I -para.mu_2*H - para.phi*H- para.gamma*H + para.gamma_a*Ha;
dR = para.mu_1*A + para.mu_0*I + para.mu_2*H - para.gamma*R + para.gamma_a*Ra;
%The Adherent population
dSa = - ((para.beta0(2,1))*Sa*I + ((para.beta0(2,2))*Sa*Ia))/para.Np +para.gamma*S-para.gamma_a*Sa;
dEa = ((para.beta0(2,1))*Sa*I + ((para.beta0(2,2))*Sa*Ia))/para.Np +para.sigma*Ea +para.gamma*E-para.gamma_a*Ea;
dIa = para.omega*para.sigma*Ea - para.mu_0*Ia -para.eta*Ia + para.gamma*I -para.gamma_a*Ia ;
dAa = (1-para.omega)*para.sigma*Ea - para.mu_1*Aa + para.gamma*A -para.gamma_a*Aa;
dHa = para.eta*Ia -para.mu_2*Ha - para.phi*Ha+ para.gamma*H - para.gamma_a*Ha;
dRa = para.mu_1*Aa + para.mu_0*Ia + para.mu_2*Ha + para.gamma*R - para.gamma_a*Ra;
dPop = [dS; dE; dI; dA; dH; dR; dSa; dEa; dIa; dAa; dHa; dRa];
end
end
Then I am runing it with the following initial conditions and parameter values:
%Define model parameters as a structure (N.B. stick to days here for ease
%later on)
A = [10 0.1; 0.1 1];
J = 13000000+53000000;
para = struct('beta0',A,'N',13000000,'Na',53000000,'sigma',0.5,'phi',0.0018, ...
'mu_0',1/20,'mu_1',1/30,'mu_2',0.0714,'omega',0.7,'gamma',0.3,'gamma_a',0.25, ...
'eta',0.2,'l',0,'Np',J);
%Define initial conditions as a structure
ICs = struct('S',para.N-1,'E',1,'I',1,'A',0,'H',0,'R',0, ...
'Sa',para.Na-0.001,'Ea',0.001,'Ia',0,'Aa',0,'Ha',0,'Ra',0);
%Define time to run model for
maxtime = 100;
%Run model
[Classes] = ODE_SEIR_adhe(para,ICs,maxtime);
Is there something I am doing wrongly?
0 Comments
Accepted Answer
Torsten
on 30 Aug 2022
Edited: Torsten
on 30 Aug 2022
%Define model parameters as a structure (N.B. stick to days here for ease
%later on)
A = [10 0.1; 0.1 1];
J = 13000000+53000000;
para = struct('beta0',A,'N',13000000,'Na',53000000,'sigma',0.5,'phi',0.0018, ...
'mu_0',1/20,'mu_1',1/30,'mu_2',0.0714,'omega',0.7,'gamma',0.3,'gamma_a',0.25, ...
'eta',0.2,'l',0,'Np',J);
%Define initial conditions as a structure
ICs = struct('S',para.N-1,'E',1,'I',1,'A',0,'H',0,'R',0, ...
'Sa',para.Na-0.001,'Ea',0.001,'Ia',0,'Aa',0,'Ha',0,'Ra',0);
%Define time to run model for
maxtime = 100;
%Run model
[Classes] = ODE_SEIR_adhe(para,ICs,maxtime);
plot(Classes.t,Classes.S)
%ODE SI model code
function [Classes] = ODE_SEIR_adhe(para,ICs,maxtime)
%Run ODE using ODE45
%opts = odeset('RelTol',1e-2);
tspan = linspace(0,maxtime,100);
[t, pop] = ode15s(@(t,y)diff_SEIR_adhe(t,y,para), tspan, [ICs.S ICs.E ICs.I ICs.A ICs.H ICs.R ICs.Sa ICs.Ea ICs.Ia ICs.Aa ICs.Ha ICs.Ra]);%,opts);
%Convert output to structure
Classes = struct('S',pop(:,1),'E',pop(:,2),'I',pop(:,3),'A',pop(:,4),'H',pop(:,5),'R',pop(:,6), ...
'Sa',pop(:,7),'Ea',pop(:,8),'Ia',pop(:,9),'Aa',pop(:,10),'Ha',pop(:,11),'Ra',pop(:,12),'t',t);
end
%Diff equations
function dPop = diff_SEIR_adhe(t,pop,para)
S=pop(1);
E=pop(2);
I=pop(3);
A=pop(4);
H=pop(5);
R=pop(6);
Sa=pop(7);
Ea=pop(8);
Ia=pop(9);
Aa=pop(10);
Ha=pop(11);
Ra=pop(12);
%The Non-adherent population
dS = - ((para.beta0(1,1))*S*I + (para.beta0(1,2))*S*Ia)/para.Np-para.gamma*S+para.gamma_a*Sa;
dE = ((para.beta0(1,1))*S*I + (para.beta0(1,2))*S*Ia)/para.Np- para.sigma*E-para.gamma*E+para.gamma_a*Ea;
dI = para.omega*para.sigma*E - para.mu_0*I -para.eta*I - para.gamma*I +para.gamma_a*Ia ;
dA = (1-para.omega)*para.sigma*E - para.mu_1*A - para.gamma*A +para.gamma_a*Aa;
dH = para.eta*I -para.mu_2*H - para.phi*H- para.gamma*H + para.gamma_a*Ha;
dR = para.mu_1*A + para.mu_0*I + para.mu_2*H - para.gamma*R + para.gamma_a*Ra;
%The Adherent population
dSa = - ((para.beta0(2,1))*Sa*I + ((para.beta0(2,2))*Sa*Ia))/para.Np +para.gamma*S-para.gamma_a*Sa;
dEa = ((para.beta0(2,1))*Sa*I + ((para.beta0(2,2))*Sa*Ia))/para.Np +para.sigma*Ea +para.gamma*E-para.gamma_a*Ea;
dIa = para.omega*para.sigma*Ea - para.mu_0*Ia -para.eta*Ia + para.gamma*I -para.gamma_a*Ia ;
dAa = (1-para.omega)*para.sigma*Ea - para.mu_1*Aa + para.gamma*A -para.gamma_a*Aa;
dHa = para.eta*Ia -para.mu_2*Ha - para.phi*Ha+ para.gamma*H - para.gamma_a*Ha;
dRa = para.mu_1*Aa + para.mu_0*Ia + para.mu_2*Ha + para.gamma*R - para.gamma_a*Ra;
dPop = [dS; dE; dI; dA; dH; dR; dSa; dEa; dIa; dAa; dHa; dRa];
end
3 Comments
Torsten
on 30 Aug 2022
Edited: Torsten
on 30 Aug 2022
That is, beyong 70 iteration it takes very very long to run. I don't know why this is like that
As Steven Lord already suggested, switch to ode15s instead of ode45.
The results will come up within a second.
This indicates that your system is stiff.
I thought you already tried it without success - that's why I didn't suggest it.
I incorporated the necessary changes in the code above.
More Answers (1)
Steven Lord
on 30 Aug 2022
The first thing I'd probably try is to use a stiff ODE solver instead of the nonstiff ODE solver ode45.
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!