MATLAB CODE of an equation including Bessel's function
9 views (last 30 days)
Show older comments
I am stuck coding the below equation. Would you please give me some guidance? I know f and beta. I need to know gamma(f,beta). Here, alpha are the zeros of the bessel function J1(x). How can I approximate the solution as it goes to infinity.
Please, would anyone kindly help me, how can I approach it?
0 Comments
Accepted Answer
Torsten
on 17 Aug 2022
Edited: Torsten
on 17 Aug 2022
Here is a very similar problem solved:
3 Comments
Torsten
on 18 Aug 2022
Edited: Torsten
on 18 Aug 2022
In my case, alpha_k are the zeros of J1(x). I understand that I need to use your function J0ROOTS to find out zeros of J1(x). My question is, will the no. Zeros be equal to the no. of Summation? For example: if I find out first 10 zeros, should I sum up k=1 to 10?
You have an infinite sum. The terms of this sum can be evaluated up to the value of k for which you have alpha_k, the k-th zero of J1(x). So you can only sum up to the k which you choose for the number of zeros supplied for J1.
You used sum(function,2) in the for loop. Does it help me to calculate K=1 to inf?
In the code, the sum over the columns of the matrix
2*besselj(0,a_k.*r)./(a_k.^2.*besselj(1,a_k)).*exp(-a_k.*t(i))
gives L(r,t(i)) , summed up from k=1 to k = n, not k = Inf, as a column vector with r = (0:0.01:1).'
Choose n big enough such that the difference between the finite and infinite sum becomes small enough for your purpose. Practically, test what comes out if you vary n.
More Answers (0)
See Also
Categories
Find more on Bessel functions in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!