How to get the weigths of factor from fit model

4 views (last 30 days)
Hi! Dear community members, I have a specific question related to fitting experimental data.
For example I get the surf fit model
[sf,gof] = fit([I, Ton],Ah,'poly22','Normalize', 'on', ...
'Robust', 'Bisquare')
% Get data into fitted surface for create result graph
hPlot = plot(sf);
X = get(hPlot,'XData');
Y = get(hPlot,'YData');
Z = get(hPlot,'ZData');
set(gcf,'visible','off')
%Create figure for fitted polynomial model
createfigure1(X,Y,Z,I,Ton,Ah)
Linear model Poly22:
sf(x,y) = p00 + p10*x + p01*y + p20*x^2 + p11*x*y + p02*y^2
where x is normalized by mean 3 and std 1.732
and where y is normalized by mean 40 and std 17.32
Coefficients (with 95% confidence bounds):
p00 = 73.63 (16.64, 130.6)
p10 = 23.25 (-3.79, 50.28)
p01 = 7.638 (-19.4, 34.67)
p20 = -19.04 (-59.59, 21.52)
p11 = 3.776 (-24.9, 32.45)
p02 = -7.146 (-47.7, 33.41)
gof =
struct with fields:
sse: 1.7321e+03
rsquare: 0.7800
dfe: 3
adjrsquare: 0.4133
rmse: 24.0283
My question is: how can one get an estimate of which term (x or y) has the most influence on the final fitting function... And how can one analytically obtain the function for a biharmonic v4 fitting?
Code of fucntion createfigure1() and initial data attach below:
function createfigure1(xdata1, ydata1, zdata1, XData2, YData2, ZData2)
%CREATEFIGURE1(xdata1, ydata1, zdata1, XData2, YData2, ZData2)
% XDATA1: surface xdata
% YDATA1: surface ydata
% ZDATA1: surface zdata
% XDATA2: line xdata
% YDATA2: line ydata
% ZDATA2: line zdata
% Auto-generated by MATLAB on 02-Jun-2022 21:55:49
% Create figure
figure1 = figure;
colormap(gray);
% Create axes
axes1 = axes('Parent',figure1);
hold(axes1,'on');
% Create surf
surf(xdata1,ydata1,zdata1,'DisplayName','Fit Result','PickableParts','none',...
'Tag','curvefit.gui.FunctionSurface',...
'Parent',axes1,...
'EdgeLighting','flat',...
'AlphaDataMapping','direct',...
'SpecularExponent',5,...
'AlignVertexCenters','on',...
'LineWidth',1,...
'FaceAlpha',0.75,...
'FaceColor',[1 1 1],...
'EdgeAlpha',0.5,...
'EdgeColor','interp',...
'AlphaData',0.5);
% Create line
line(XData2,YData2,ZData2,'DisplayName','Experimental','Parent',axes1,...
'MarkerFaceColor',[1 0 0],...
'MarkerEdgeColor',[1 1 1],...
'MarkerSize',8,...
'Marker','o',...
'LineStyle','none',...
'Color',[0.466666666666667 0.674509803921569 0.188235294117647]);
% Create zlabel
zlabel('$A_{l}$','FontSize',14,'Interpreter','latex','Rotation',0);
% Create ylabel
ylabel('$T_{p}$','FontSize',14,'FontName','Times New Roman',...
'Interpreter','latex');
% Create xlabel
xlabel('I.','FontSize',14,'FontName','Times New Roman',...
'Rotation',28);
% Create title
title('$ A_{l} = f(I, T_{p}) $','FontSize',14,'FontName','Times New Roman',...
'Interpreter','latex');
view(axes1,[-57.561079176767 23.2221402047369]);
grid(axes1,'on');
axis(axes1,'padded');
hold(axes1,'off');
% Set the remaining axes properties
set(axes1,'Colormap',...
[0.18995 0.07176 0.23217;0.19483 0.08339 0.26149;0.19956 0.09498 0.29024;0.20415 0.10652 0.31844;0.2086 0.11802 0.34607;0.21291 0.12947 0.37314;0.21708 0.14087 0.39964;0.22111 0.15223 0.42558;0.225 0.16354 0.45096;0.22875 0.17481 0.47578;0.23236 0.18603 0.50004;0.23582 0.1972 0.52373;0.23915 0.20833 0.54686;0.24234 0.21941 0.56942;0.24539 0.23044 0.59142;0.2483 0.24143 0.61286;0.25107 0.25237 0.63374;0.25369 0.26327 0.65406;0.25618 0.27412 0.67381;0.25853 0.28492 0.693;0.26074 0.29568 0.71162;0.2628 0.30639 0.72968;0.26473 0.31706 0.74718;0.26652 0.32768 0.76412;0.26816 0.33825 0.7805;0.26967 0.34878 0.79631;0.27103 0.35926 0.81156;0.27226 0.3697 0.82624;0.27334 0.38008 0.84037;0.27429 0.39043 0.85393;0.27509 0.40072 0.86692;0.27576 0.41097 0.87936;0.27628 0.42118 0.89123;0.27667 0.43134 0.90254;0.27691 0.44145 0.91328;0.27701 0.45152 0.92347;0.27698 0.46153 0.93309;0.2768 0.47151 0.94214;0.27648 0.48144 0.95064;0.27603 0.49132 0.95857;0.27543 0.50115 0.96594;0.27469 0.51094 0.97275;0.27381 0.52069 0.97899;0.27273 0.5304 0.98461;0.27106 0.54015 0.9893;0.26878 0.54995 0.99303;0.26592 0.55979 0.99583;0.26252 0.56967 0.99773;0.25862 0.57958 0.99876;0.25425 0.5895 0.99896;0.24946 0.59943 0.99835;0.24427 0.60937 0.99697;0.23874 0.61931 0.99485;0.23288 0.62923 0.99202;0.22676 0.63913 0.98851;0.22039 0.64901 0.98436;0.21382 0.65886 0.97959;0.20708 0.66866 0.97423;0.20021 0.67842 0.96833;0.19326 0.68812 0.9619;0.18625 0.69775 0.95498;0.17923 0.70732 0.94761;0.17223 0.7168 0.93981;0.16529 0.7262 0.93161;0.15844 0.73551 0.92305;0.15173 0.74472 0.91416;0.14519 0.75381 0.90496;0.13886 0.76279 0.8955;0.13278 0.77165 0.8858;0.12698 0.78037 0.8759;0.12151 0.78896 0.86581;0.11639 0.7974 0.85559;0.11167 0.80569 0.84525;0.10738 0.81381 0.83484;0.10357 0.82177 0.82437;0.10026 0.82955 0.81389;0.0975 0.83714 0.80342;0.09532 0.84455 0.79299;0.09377 0.85175 0.78264;0.09287 0.85875 0.7724;0.09267 0.86554 0.7623;0.0932 0.87211 0.75237;0.09451 0.87844 0.74265;0.09662 0.88454 0.73316;0.09958 0.8904 0.72393;0.10342 0.896 0.715;0.10815 0.90142 0.70599;0.11374 0.90673 0.69651;0.12014 0.91193 0.6866;0.12733 0.91701 0.67627;0.13526 0.92197 0.66556;0.14391 0.9268 0.65448;0.15323 0.93151 0.64308;0.16319 0.93609 0.63137;0.17377 0.94053 0.61938;0.18491 0.94484 0.60713;0.19659 0.94901 0.59466;0.20877 0.95304 0.58199;0.22142 0.95692 0.56914;0.23449 0.96065 0.55614;0.24797 0.96423 0.54303;0.2618 0.96765 0.52981;0.27597 0.97092 0.51653;0.29042 0.97403 0.50321;0.30513 0.97697 0.48987;0.32006 0.97974 0.47654;0.33517 0.98234 0.46325;0.35043 0.98477 0.45002;0.36581 0.98702 0.43688;0.38127 0.98909 0.42386;0.39678 0.99098 0.41098;0.41229 0.99268 0.39826;0.42778 0.99419 0.38575;0.44321 0.99551 0.37345;0.45854 0.99663 0.3614;0.47375 0.99755 0.34963;0.48879 0.99828 0.33816;0.50362 0.99879 0.32701;0.51822 0.9991 0.31622;0.53255 0.99919 0.30581;0.54658 0.99907 0.29581;0.56026 0.99873 0.28623;0.57357 0.99817 0.27712;0.58646 0.99739 0.26849;0.59891 0.99638 0.26038;0.61088 0.99514 0.2528;0.62233 0.99366 0.24579;0.63323 0.99195 0.23937;0.64362 0.98999 0.23356;0.65394 0.98775 0.22835;0.66428 0.98524 0.2237;0.67462 0.98246 0.2196;0.68494 0.97941 0.21602;0.69525 0.9761 0.21294;0.70553 0.97255 0.21032;0.71577 0.96875 0.20815;0.72596 0.9647 0.2064;0.7361 0.96043 0.20504;0.74617 0.95593 0.20406;0.75617 0.95121 0.20343;0.76608 0.94627 0.20311;0.77591 0.94113 0.2031;0.78563 0.93579 0.20336;0.79524 0.93025 0.20386;0.80473 0.92452 0.20459;0.8141 0.91861 0.20552;0.82333 0.91253 0.20663;0.83241 0.90627 0.20788;0.84133 0.89986 0.20926;0.8501 0.89328 0.21074;0.85868 0.88655 0.2123;0.86709 0.87968 0.21391;0.8753 0.87267 0.21555;0.88331 0.86553 0.21719;0.89112 0.85826 0.2188;0.8987 0.85087 0.22038;0.90605 0.84337 0.22188;0.91317 0.83576 0.22328;0.92004 0.82806 0.22456;0.92666 0.82025 0.2257;0.93301 0.81236 0.22667;0.93909 0.80439 0.22744;0.94489 0.79634 0.228;0.95039 0.78823 0.22831;0.9556 0.78005 0.22836;0.96049 0.77181 0.22811;0.96507 0.76352 0.22754;0.96931 0.75519 0.22663;0.97323 0.74682 0.22536;0.97679 0.73842 0.22369;0.98 0.73 0.22161;0.98289 0.7214 0.21918;0.98549 0.7125 0.2165;0.98781 0.7033 0.21358;0.98986 0.69382 0.21043;0.99163 0.68408 0.20706;0.99314 0.67408 0.20348;0.99438 0.66386 0.19971;0.99535 0.65341 0.19577;0.99607 0.64277 0.19165;0.99654 0.63193 0.18738;0.99675 0.62093 0.18297;0.99672 0.60977 0.17842;0.99644 0.59846 0.17376;0.99593 0.58703 0.16899;0.99517 0.57549 0.16412;0.99419 0.56386 0.15918;0.99297 0.55214 0.15417;0.99153 0.54036 0.1491;0.98987 0.52854 0.14398;0.98799 0.51667 0.13883;0.9859 0.50479 0.13367;0.9836 0.49291 0.12849;0.98108 0.48104 0.12332;0.97837 0.4692 0.11817;0.97545 0.4574 0.11305;0.97234 0.44565 0.10797;0.96904 0.43399 0.10294;0.96555 0.42241 0.09798;0.96187 0.41093 0.0931;0.95801 0.39958 0.08831;0.95398 0.38836 0.08362;0.94977 0.37729 0.07905;0.94538 0.36638 0.07461;0.94084 0.35566 0.07031;0.93612 0.34513 0.06616;0.93125 0.33482 0.06218;0.92623 0.32473 0.05837;0.92105 0.31489 0.05475;0.91572 0.3053 0.05134;0.91024 0.29599 0.04814;0.90463 0.28696 0.04516;0.89888 0.27824 0.04243;0.89298 0.26981 0.03993;0.88691 0.26152 0.03753;0.88066 0.25334 0.03521;0.87422 0.24526 0.03297;0.8676 0.2373 0.03082;0.86079 0.22945 0.02875;0.8538 0.2217 0.02677;0.84662 0.21407 0.02487;0.83926 0.20654 0.02305;0.83172 0.19912 0.02131;0.82399 0.19182 0.01966;0.81608 0.18462 0.01809;0.80799 0.17753 0.0166;0.79971 0.17055 0.0152;0.79125 0.16368 0.01387;0.7826 0.15693 0.01264;0.77377 0.15028 0.01148;0.76476 0.14374 0.01041;0.75556 0.13731 0.00942;0.74617 0.13098 0.00851;0.73661 0.12477 0.00769;0.72686 0.11867 0.00695;0.71692 0.11268 0.00629;0.7068 0.1068 0.00571;0.6965 0.10102 0.00522;0.68602 0.09536 0.00481;0.67535 0.0898 0.00449;0.66449 0.08436 0.00424;0.65345 0.07902 0.00408;0.64223 0.0738 0.00401;0.63082 0.06868 0.00401;0.61923 0.06367 0.0041;0.60746 0.05878 0.00427;0.5955 0.05399 0.00453;0.58336 0.04931 0.00486;0.57103 0.04474 0.00529;0.55852 0.04028 0.00579;0.54583 0.03593 0.00638;0.53295 0.03169 0.00705;0.51989 0.02756 0.0078;0.50664 0.02354 0.00863;0.49321 0.01963 0.00955;0.4796 0.01583 0.01055],...
'GridAlpha',0.5,'GridColor',...
[0.501960784313725 0.501960784313725 0.501960784313725],'MinorGridAlpha',...
0.35,'MinorGridColor',...
[0.501960784313725 0.501960784313725 0.501960784313725],...
'TickLabelInterpreter','latex','XColor',...
[0 0.447058823529412 0.741176470588235],'XMinorGrid','on','XMinorTick','on',...
'YColor',[1 0.411764705882353 0.16078431372549],'YMinorGrid','on',...
'YMinorTick','on','ZColor',[0 0.549019607843137 0.137254901960784],...
'ZMinorGrid','on','ZMinorTick','on');
% Create colorbar
colorbar(axes1);

Answers (0)

Categories

Find more on Curve Fitting Toolbox in Help Center and File Exchange

Products


Release

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!