Integrating a LSTM layer into a NARX network

23 views (last 30 days)
Hi, is it possible to integrate an LSTM layer into this type of network?
obtaining a network like:
Input Layer - NARX - LSTM - Output Layer ?
thanks to anyone who can help me
I attach my current code where I would like to insert the LSTM layer:
_______________________________________________________________________________________
% Solve an Autoregression Problem with External Input with a NARX Neural Network
%
% This script assumes these variables are defined:
%
% NN-IN - input time series.
% NN-TARG - feedback time series.
clear; clc; format long;
IN = readmatrix('NN-IN.xlsx');
TARG = readmatrix('NN-TARG.csv');
X = tonndata(IN,false,false);
T = tonndata(TARG,false,false);
% Choose a Training Function
% 'trainscg' uses less memory. Suitable in low memory situations.
% 'traingdx' Gradient descent with momentum and adaptive learning rate backpropagation
trainFcn = 'trainscg'; % Scaled conjugate gradient backpropagation.
% Create a Nonlinear Autoregressive Network with External Input
inputDelays = 1:2;
feedbackDelays = 1:2;
hiddenLayerSize = [30,10];
net = narxnet(inputDelays,feedbackDelays,hiddenLayerSize,'open',trainFcn);
% Prepare the Data for Training and Simulation
[x,xi,ai,t] = preparets(net,X,{},T);
% Setup Division of Data for Training, Validation, Testing
net.divideFcn = 'divideblock';
net.divideMode = 'time';
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;
%Tolerance
net.trainParam.max_fail=3;
tic
% Train the Network
[net,tr] = train(net,x,t,xi,ai);
toc
% Test the Network
y = net(x,xi,ai);
e = gsubtract(t,y);
% net.performParam = 'normalized';
% net.performFcn = 'mse';
performance = perform(net,t,y);
% View the Network
view(net);
  4 Comments
sam l
sam l on 28 Sep 2022
I am looking to use NARX and LSTM , but yet to figure out it .
I was looking at CNN+RNN and thought if i can be done

Sign in to comment.

Answers (1)

Conor Daly
Conor Daly on 31 Mar 2023
Hi Girolamo,
You can combine NARX and LSTM architectures within dlnetwork. Note that a NARX network is essentially a 1D convolution over a concatenation of the input sequence x and the time steps t. Here's an example which you can run using the L-BFGS optimizer which was released with R2023a:
%% Get MagLev data.
[x,t] = maglev_dataset;
x = [x{:}];
t = [t{:}];
X1 = dlarray(x(:, 1:end-1), 'CTB');
X2 = dlarray(t(:, 1:end-1), 'CTB');
T = dlarray(t(:, 3:end), 'CTB');
%% Construct NARX-LSTM dlnetwork.
layers = [ sequenceInputLayer(1, Name="xin", MinLength=2)
concatenationLayer(1, 2, Name="cat")
convolution1dLayer(2, 10)
tanhLayer()
lstmLayer(16)
fullyConnectedLayer(1) ];
lg = layerGraph(layers);
lg = addLayers(lg, sequenceInputLayer(1, Name="tin", MinLength=2));
lg = connectLayers(lg, "tin", "cat/in2");
net = dlnetwork(lg);
analyzeNetwork(net, X1, X2)
%% Train using L-BFGS.
maxEpochs = 150;
solverState = [];
lossFcn = @(net)dlfeval(@modelLoss, net, X1, X2, T);
monitor = trainingProgressMonitor;
monitor.Metrics = "TrainingLoss";
monitor.XLabel = "Epoch";
for epoch = 1:maxEpochs
[net, solverState] = lbfgsupdate(net, lossFcn, solverState);
recordMetrics(monitor, epoch, TrainingLoss=solverState.Loss);
end
%% Open-loop inference.
Y = predict(net, X1, X2);
yopen = extractdata(Y(:));
figure;
plot(yopen, '.'), hold on, plot(t(3:end))
%% Model loss function.
function [loss, grad] = modelLoss(net, X1, X2, T)
Y = predict(net, X1, X2);
loss = l2loss(Y, T);
grad = dlgradient(loss, net.Learnables);
end

Categories

Find more on Sequence and Numeric Feature Data Workflows in Help Center and File Exchange

Products


Release

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!