Solving system of 3 non-linear equation with dynamic equality output
2 views (last 30 days)
Show older comments
I need to solve the set of equations given below for x1,x2,x3 such that x1+x2+x3==420 (for t=0 to t=0.2), x1+x2+x3==500 (for t=0.2 to t=0.4) and x1+x2+x3==420 (after t=0.4).
I tried to use step function in the code as x1+x2+x3=420*(stepfun(0:0.1:5,1)). But it did not work. Please suggest possible change in the code to incorporate the above change.
syms x1 x2 x3 t
eqns = [
x1 == t*(10*abs((18*x2)/125 - (24*x1)/125 + 111/50)^2*sign((18*x2)/125 - (24*x1)/125 + 111/50) + 10*abs((18*x2)/125 - (24*x1)/125 + 111/50)^(1/2)*sign((18*x2)/125 - (24*x1)/125 + 111/50)) - t*(10*abs((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100)^2*sign((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100) + 10*abs((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100)^(1/2)*sign((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100)) + 140
x2 == 2*t*(10*abs((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100)^2*sign((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100) + 10*abs((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100)^(1/2)*sign((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100)) - t*(10*abs((18*x2)/125 - (21*x3)/100 + 91/100)^2*sign((18*x2)/125 - (21*x3)/100 + 91/100) + 10*abs((18*x2)/125 - (21*x3)/100 + 91/100)^(1/2)*sign((18*x2)/125 - (21*x3)/100 + 91/100)) - t*(10*abs((18*x2)/125 - (24*x1)/125 + 111/50)^2*sign((18*x2)/125 - (24*x1)/125 + 111/50) + 10*abs((18*x2)/125 - (24*x1)/125 + 111/50)^(1/2)*sign((18*x2)/125 - (24*x1)/125 + 111/50)) + 140
x3 == t*(10*abs((18*x2)/125 - (21*x3)/100 + 91/100)^2*sign((18*x2)/125 - (21*x3)/100 + 91/100) + 10*abs((18*x2)/125 - (21*x3)/100 + 91/100)^(1/2)*sign((18*x2)/125 - (21*x3)/100 + 91/100)) - t*(10*abs((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100)^2*sign((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100) + 10*abs((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100)^(1/2)*sign((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100)) + 140
x1+x2+x3==420]
E2 = lhs(eqns)-rhs(eqns)
F = matlabFunction(E2, 'vars', {[x1,x2,x3], t})
T = linspace(0,50,500);
nT = length(T);
sols = zeros(nT, 3);
x0 = [140, 140, 140];
options = optimoptions(@fsolve, 'Algorithm', 'levenberg-marquardt', 'display', 'none');
have_warned = false;
for tidx = 1 : nT
[thissol, ~, exitflag] = fsolve(@(x) F(x,T(tidx)), x0, options);
sols(tidx, :) = thissol;
x0 = thissol;
if exitflag <= 0 & ~have_warned
warning('solution failure code %d starting at time = %g', exitflag, T(tidx));
have_warned = true;
end
end
plot(T, sols);
legend({'x1', 'x2', 'x3'});
0 Comments
Accepted Answer
Torsten
on 29 Jun 2022
syms x1 x2 x3 t A
eqns = [
x1 == t*(10*abs((18*x2)/125 - (24*x1)/125 + 111/50)^2*sign((18*x2)/125 - (24*x1)/125 + 111/50) + 10*abs((18*x2)/125 - (24*x1)/125 + 111/50)^(1/2)*sign((18*x2)/125 - (24*x1)/125 + 111/50)) - t*(10*abs((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100)^2*sign((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100) + 10*abs((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100)^(1/2)*sign((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100)) + 140
x2 == 2*t*(10*abs((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100)^2*sign((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100) + 10*abs((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100)^(1/2)*sign((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100)) - t*(10*abs((18*x2)/125 - (21*x3)/100 + 91/100)^2*sign((18*x2)/125 - (21*x3)/100 + 91/100) + 10*abs((18*x2)/125 - (21*x3)/100 + 91/100)^(1/2)*sign((18*x2)/125 - (21*x3)/100 + 91/100)) - t*(10*abs((18*x2)/125 - (24*x1)/125 + 111/50)^2*sign((18*x2)/125 - (24*x1)/125 + 111/50) + 10*abs((18*x2)/125 - (24*x1)/125 + 111/50)^(1/2)*sign((18*x2)/125 - (24*x1)/125 + 111/50)) + 140
x3 == t*(10*abs((18*x2)/125 - (21*x3)/100 + 91/100)^2*sign((18*x2)/125 - (21*x3)/100 + 91/100) + 10*abs((18*x2)/125 - (21*x3)/100 + 91/100)^(1/2)*sign((18*x2)/125 - (21*x3)/100 + 91/100)) - t*(10*abs((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100)^2*sign((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100) + 10*abs((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100)^(1/2)*sign((24*x1)/125 - (36*x2)/125 + (21*x3)/100 - 313/100)) + 140
x1+x2+x3==A];
E2 = lhs(eqns)-rhs(eqns);
F = matlabFunction(E2, 'vars', {[x1,x2,x3], t, A})
T = linspace(0,50,500);
nT = length(T);
sols = zeros(nT, 3);
x0 = [140, 140, 140];
options = optimoptions(@fsolve, 'Algorithm', 'levenberg-marquardt', 'display', 'none');
have_warned = false;
for tidx = 1 : nT
A = (T(tidx)<=0.2)*420 + (T(tidx)>0.2 && T(tidx)<=0.4)*500 + (T(tidx)>0.4)*420;
[thissol, ~, exitflag] = fsolve(@(x) F(x,T(tidx),A), x0, options);
exitflag
sols(tidx, :) = thissol;
x0 = thissol;
if exitflag <= 0 & ~have_warned
warning('solution failure code %d starting at time = %g', exitflag, T(tidx));
have_warned = true;
end
end
plot(T, sols);
legend({'x1', 'x2', 'x3'});
0 Comments
More Answers (0)
See Also
Categories
Find more on Nonlinear Optimization in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!