Using Implicit Euler Method with Newton-Raphson method
72 views (last 30 days)
Show older comments
So I'm following this algorithm to write a code on implicit euler method

and here is my attempt
function y = imp_euler(f,f_y,t0,T,y0,h,tol,N)
t = t0:h:T;
n = length(t);
y = zeros(n,1);
y(1) = y0;
for k = 1:n-1
g = @(z) z - y(k) - h*f(t(k+1),z);
gp = @(z) 1 - h*f_y(t(k+1),z) ;
y(k+1) = newton(f,f_y,y(k),tol,N);
end
end
where
function sol=newton(f,fp,x0,tol,N)
i=0;
sol = zeros(N,2);
fc=abs(f(x0));
while (fc>tol)
xc = x0 - (f(x0)/fp(x0));
fc=abs(f(xc));
x0 = xc;
i=i+1;
sol(i,:) = [i; x0];
if (i>N)
fprintf('Method failed after %d iterations. \n',N);
break
end
end
sol = sol(any(sol,2),:);
end
Unfortunately, my code does not work for some reason. Could anybody guide me on how to code this? Comments are appreciated.
7 Comments
Accepted Answer
Torsten
on 11 May 2022
Edited: Torsten
on 11 May 2022
f = @(t,y) -20*t*y^2;
f_y = @(t,y) -40*t*y;
t0 = 0;
T = 1;
y0 = 1;
h = 0.01;
tol = 1e-8;
N = 100;
y = imp_euler(f,f_y,t0,T,y0,h,tol,N)
plot(t0:h:T,y)
hold on
plot(t0:h:T,1./(1+10*(t0:h:T).^2))
function y = imp_euler(f,f_y,t0,T,y0,h,tol,N)
t = t0:h:T;
n = length(t);
y = zeros(n,1);
y(1) = y0;
for k = 1:n-1
g = @(z) z - y(k) - h*f(t(k+1),z);
gp = @(z) 1 - h*f_y(t(k+1),z) ;
disp('Vor Newton call.')
y(k+1) = newton(g,gp,y(k),tol,N);
disp('nach Newton Call.')
end
end
function sol=newton(f,fp,x0,tol,N)
i=0;
sol = zeros(N,2);
fc=abs(f(x0));
while fc > tol
xc = x0 - (f(x0)/fp(x0));
fc=abs(f(xc));
x0 = xc;
i=i+1;
if (i>N)
fprintf('Method failed after %d iterations. \n',N);
break
end
end
sol = x0;
end
1 Comment
Haseeb Hashim
on 20 Nov 2022
@Torsten Man thanks. You are a legend. I was looking for this code for so long
More Answers (0)
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!