Quick Problem - Force MATLAB to substitute assigned variable values

7 views (last 30 days)
I have a code simulating a robotic arm but need to address some issues within it (complex numbers...sigh). To do so I must seperate out sections of my code. but MATLAB is very reluctant to substitute in assigned variable values for me.
However, when I assign a value to the variable t for a long/complicated equation, MATLAB won't substitute in this assigned value for me. For instance, when I run:
problem = acos(((z0.*cos((2642680826589289.*t)/36028797018963968) + (36028797018963968.*v1(3).*sin((2642680826589289.*t)/36028797018963968))/2642680826589289).^2 + (y0 - (72057594037927936.*v1(1))/2642680826589289 - t.*(3.*v1(2) + (7928042479767867.*x0)/18014398509481984) + (72057594037927936.*v1(1).*cos((2642680826589289.*t)/36028797018963968))/2642680826589289 + sin((2642680826589289.*t)/36028797018963968).*((144115188075855872.*v1(2))/2642680826589289 + 6.*x0)).^2 + ((72057594037927936.*v1(2))/2642680826589289 + 4.*x0 + (36028797018963968.*v1(1).*sin((2642680826589289.*t)/36028797018963968))/2642680826589289 - cos((2642680826589289.*t)/36028797018963968).*((72057594037927936.*v1(2))/2642680826589289 + 3.*x0)).^2 + L1.^2 - L2.^2)./((y0 - (72057594037927936.*v1(1))/2642680826589289 - t.*(3.*v1(2) + (7928042479767867.*x3)/18014398509481984) + (72057594037927936.*v1(1).*cos((2642680826589289.*t)/36028797018963968))/2642680826589289 + sin((2642680826589289.*t)/36028797018963968).*((144115188075855872.*v1(2))/2642680826589289 + 6.*x0)).^2 + 2.*((72057594037927936.*v1(2))/2642680826589289 + 4.*x0 + (36028797018963968.*v1(1).*sin((2642680826589289.*t)/36028797018963968))/2642680826589289 - cos((2642680826589289.*t)/36028797018963968).*((72057594037927936.*v1(2))/2642680826589289 + 3.*x0)).^2 + L1.*(z0.*cos((2642680826589289.*t)/36028797018963968) + (36028797018963968.*v1(3).*sin((2642680826589289.*t)/36028797018963968))/2642680826589289).^2));
where all variables are assigned values (if you wish to try x0,y0,z0=0, and all other values are arbritrary). However, it returns:
acos(((1565815393769912744046456672400*cos((2642680826589289*t)/36028797018963968)^2)/10622301927809647241275780768317441 + ((10057422861105304*sin((2642680826589289*t)/36028797018963968))/2576613805924556775 - (176530527569188108*cos((2642680826589289*t)/36028797018963968))/2576613805924556775 + 36311847799948152/858871268641518925)^2 + ((1262719709398513096*sin((2642680826589289*t)/36028797018963968))/2576613805924556775 - (2706998657796766952*cos((2642680826589289*t)/36028797018963968))/2576613805924556775 + 26706868099968188/34354850745660757)^2)/(((4164656525256473544014663708285387085997464737221633*sin((2642680826589289*t)/36028797018963968))/104519873204371423276067813771760764939987111116800 - (4160974066403753513123278688624796953781064124009473*cos((2642680826589289*t)/36028797018963968))/52259936602185711638033906885880382469993555558400 - (198201061994196675*cos((2642680826589289*t)/36028797018963968)*((32776373919501099224090370885186929*sin((2642680826589289*t)/36028797018963968))/92832295809916075125361180095283200 - (32776373919501099224090370885186929*cos((2642680826589289*t)/36028797018963968))/46416147904958037562680590047641600 + 11358149378044935377074331655830651/15472049301652679187560196682547200))/1125899906842624 + (9360*cos((2642680826589289*t)/36028797018963968)*((32776373919501099224090370885186929*sin((2642680826589289*t)/36028797018963968))/632811179633932117227154240123699200 - (32776373919501099224090370885186929*cos((2642680826589289*t)/36028797018963968))/316405589816966058613577120061849600 + 11358149378044935377074331655830651/105468529938988686204525706687283200))/11 + (198201061994196675*sin((2642680826589289*t)/36028797018963968)*((1405123083739594752*sin((2642680826589289*t)/36028797018963968)*((32776373919501099224090370885186929*sin((2642680826589289*t)/36028797018963968))/1265622359267864234454308480247398400 - (32776373919501099224090370885186929*cos((2642680826589289*t)/36028797018963968))/632811179633932117227154240123699200 + 11358149378044935377074331655830651/210937059877977372409051413374566400))/145347445462410895 + (1405123083739594752*cos((2642680826589289*t)/36028797018963968)*(cos((2642680826589289*t)/36028797018963968)/975 + (2*sin((2642680826589289*t)/36028797018963968))/975))/145347445462410895))/4503599627370496 + (198201061994196675*sin((2642680826589289*t)/36028797018963968)*((36028797018963968*cos((2642680826589289*t)/36028797018963968))/2576613805924556775 + (72057594037927936*sin((2642680826589289*t)/36028797018963968))/2576613805924556775))/1125899906842624 - (198201061994196675*cos((2642680826589289*t)/36028797018963968)*((1032559034367721397915848332348241*sin((2642680826589289*t)/36028797018963968))/2417507703383231123056280731648000 - (1032559034367721397915848332348241*cos((2642680826589289*t)/36028797018963968))/1208753851691615561528140365824000 - 3*cos((2642680826589289*t)/36028797018963968)*((32776373919501099224090370885186929*sin((2642680826589289*t)/36028797018963968))/92832295809916075125361180095283200 - (32776373919501099224090370885186929*cos((2642680826589289*t)/36028797018963968))/46416147904958037562680590047641600 + 11358149378044935377074331655830651/15472049301652679187560196682547200) + (2810246167479189504*cos((2642680826589289*t)/36028797018963968)*((32776373919501099224090370885186929*sin((2642680826589289*t)/36028797018963968))/632811179633932117227154240123699200 - (32776373919501099224090370885186929*cos((2642680826589289*t)/36028797018963968))/316405589816966058613577120061849600 + 11358149378044935377074331655830651/105468529938988686204525706687283200))/145347445462410895 + 3*sin((2642680826589289*t)/36028797018963968)*((36028797018963968*cos((2642680826589289*t)/36028797018963968))/2576613805924556775 + (72057594037927936*sin((2642680826589289*t)/36028797018963968))/2576613805924556775) - (2810246167479189504*sin((2642680826589289*t)/36028797018963968)*((2*cos((2642680826589289*t)/36028797018963968))/975 + (4*sin((2642680826589289*t)/36028797018963968))/975))/145347445462410895 + 11682667931703362103857487676406907/13296292368607771176809544024064000))/4503599627370496 - (9360*sin((2642680826589289*t)/36028797018963968)*((2*cos((2642680826589289*t)/36028797018963968))/975 + (4*sin((2642680826589289*t)/36028797018963968))/975))/11 + 242321889399991089177295329391562660298931712932633/2947996423713040143683963978177867729076559544320)^2 + (10984194987295937899485893556886*cos((2642680826589289*t)/36028797018963968)^2)/10622301927809647241275780768317441 + 2*((10057422861105304*sin((2642680826589289*t)/36028797018963968))/2576613805924556775 - (176530527569188108*cos((2642680826589289*t)/36028797018963968))/2576613805924556775 + 36311847799948152/858871268641518925)^2));
It has substituted in for all variables but t.
Furthermore, if I manually replace all t with a value, it will swap these values of t with the variable t, leaving me in the same place. I can work around this, but it is very slow and frustrating. Any idea how I can force it to substitute t?
  2 Comments
Jude Diab
Jude Diab on 3 Apr 2022
In the original code, yes, but in this segment of code used for debugging, no, I assigned t a value and removed syms.
The full code is a 400 line mess and I don't have a lot of time to tidy it haha. Here is the debugging code I am using:
t=100;
prob = acos(((z0.*cos((2642680826589289.*t)/36028797018963968) + (36028797018963968.*v1(3).*sin((2642680826589289.*t)/36028797018963968))/2642680826589289).^2 + (y0 - (72057594037927936.*v1(1))/2642680826589289 - t.*(3.*v1(2) + (7928042479767867.*x0)/18014398509481984) + (72057594037927936.*v1(1).*cos((2642680826589289.*t)/36028797018963968))/2642680826589289 + sin((2642680826589289.*t)/36028797018963968).*((144115188075855872.*v1(2))/2642680826589289 + 6.*x0)).^2 + ((72057594037927936.*v1(2))/2642680826589289 + 4.*x0 + (36028797018963968.*v1(1).*sin((2642680826589289.*t)/36028797018963968))/2642680826589289 - cos((2642680826589289.*t)/36028797018963968).*((72057594037927936.*v1(2))/2642680826589289 + 3.*x0)).^2 + L1.^2 - L2.^2)./((y0 - (72057594037927936.*v1(1))/2642680826589289 - t.*(3.*v1(2) + (7928042479767867.*x3)/18014398509481984) + (72057594037927936.*v1(1).*cos((2642680826589289.*t)/36028797018963968))/2642680826589289 + sin((2642680826589289.*t)/36028797018963968).*((144115188075855872.*v1(2))/2642680826589289 + 6.*x0)).^2 + 2.*((72057594037927936.*v1(2))/2642680826589289 + 4.*x0 + (36028797018963968.*v1(1).*sin((2642680826589289.*t)/36028797018963968))/2642680826589289 - cos((2642680826589289.*t)/36028797018963968).*((72057594037927936.*v1(2))/2642680826589289 + 3.*x0)).^2 + L1.*(z0.*cos((2642680826589289.*t)/36028797018963968) + (36028797018963968.*v1(3).*sin((2642680826589289.*t)/36028797018963968))/2642680826589289).^2));
[num, den]= numden(prob);
snum = simplify(num);
snolution = simplify(den/num)
As you can see I tried to use the simplify function in an attempt to remove t but it doesn't do this.
and here is the code you can run to obtain the variables that aren't t (I know it contains syms but I understand that should be overruled by assigning it a value the start of the debugging code)
%%
x0 = 0; % [m] , Part0 is onboard so no initial displacement
y0 = 0; % [m] , Part0 is onboard
z0 = 0; % [m] , Part0 is onboard
xdot0 = 0.01; % [m/s]
ydot0 = 0.01; % [m/s]
zdot0 = 0.01; % [m/s]
%% Constants
GravPara = 3.986004418*10^14 ; % [m^3/s^2] , Standard gravitational parameter (Earth)
OrbHeight = 420*10^3 ; % [m] , Height of orbit
w = sqrt(GravPara/(OrbHeight)^3); % [rad/s] , Orbital velocity
L = 14.07; %[m]
%% Assembly details
m1 = 400 ; %[kg] , mass of part1 r
m2 = 3500 ; %[kg] , mass of part2
m3 = 1600 ; %[kg] , mass of part3
m4 = 1000 ;
total_mass = m1+m2+m3+m4;
%% Time
t_prt0 = 0 ; %[s], time elapsed when part1 is added
t_prt1 = (2*L/sqrt(xdot0^2 + ydot0^2 + zdot0^2)); %[s], time elapsed when part2 is added
t_prt2 = (2*2*L/sqrt(xdot0^2 + ydot0^2 + zdot0^2)); %[s], time elapsed when part3 is added
t_prt3 = (3*2*L/sqrt(xdot0^2 + ydot0^2 + zdot0^2)); %[s], time elapsed when part4 is added
%% Part0 Added
t0 = [0:t_prt0]'; %[s], defining time for 1st stage of calc
%t0 = [linspace(0:t_prt0)]';
v0 = (m1/m1).*[xdot0,ydot0,zdot0]; %Part1 dropped into space
x1 = (v0(1)/w)*sin(w.*t0) - (3*x0 + 2*v0(2)/w)*cos(w.*t0)+(4*x0 + 2*v0(2)/w);
y1 = (6*x0 + 4*v0(2)/w)*sin(w*t0)+(2*v0(1)/w)*cos(w*t0)-(6*w*x0 + 3*v0(2))*t0+(y0-2*v0(1)/w);
z1 = z0*cos(w*t0) + (v0(3)/w)*sin(w*t0);
xdot1 = v0(1)*cos(w*t0) + (3*w*x0 + 2*v0(2))*sin(w*t0);
ydot1 = (6*w*x0 + 4*v0(2))*cos(w*t0) - (2*v0(1))*sin(w*t0) - (6*w*x0 + 3*v0(2));
zdot1 = (-w*z0)*sin(w*t0) + v0(3)*cos(w*t0);
%% Part1 Added
t1 = [(t_prt0+1):t_prt1]'; %[s], defining time for 2nd stage of calc
%t1 = [linspace(t_prt0+1,t_prt1)]';
v1 = (m1/(m1+m2)).*[xdot1,ydot1,zdot1]; %Momentum transfer - Part2 added to Part1
x2 = ((v1(1))/w).*sin(w.*t1) - (3.*x1 + 2.*(v1(2))/w).*cos(w.*t1)+(4.*x1 + 2.*(v1(2))/w);
y2 = (6*x1 + 4*v1(2)/w).*sin(w*t1)+(2*v1(1)/w).*cos(w*t1)-(6*w*x1 + 3*v1(2)).*t1+(y1-2*v1(1)/w);
z2 = z1.*cos(w.*t1) + (v1(3)/w).*sin(w.*t1);
xdot2 = v1(1).*cos(w.*t1) + (3*w*x1 + 2*v1(2)).*sin(w.*t1);
ydot2 = (6*w*x1 + 4*v1(2)).*cos(w.*t1) - (2*v1(1)).*sin(w.*t1) - (6*w*x1 + 3*v1(2));
zdot2 = (-w*z1).*sin(w.*t1) + v1(3).*cos(w.*t1);
%% Part2 Added
t2 = [(t_prt1+1):t_prt2]'; %[s], defining time for 3rd stage of calc
%t2 = [linspace(t_prt1+1,t_prt2)]';
v2 = ((m1+m2)/(m1+m2+m3)).*[xdot2,ydot2,zdot2]; %Momentum transfer - Part3 added to Part1&Part2
x3 = (v2(1)/w).*sin(w.*t2) - (3*x2 + 2*v2(2)/w).*cos(w.*t2)+(4*x2 + 2*v2(2)/w);
y3 = (6*x2 + 4*v2(2)/w).*sin(w.*t2)+(2*v2(1)/w).*cos(w.*t2)-(6*w*x2 + 3*v2(2)).*t2+(y2-2*v2(1)/w);
z3 = z2.*cos(w.*t2) + (v2(3)/w).*sin(w.*t2);
xdot3 = v2(1).*cos(w.*t2) + (3*w*x2 + 2*v2(2)).*sin(w.*t2);
ydot3 = (6*w*x2 + 4*v2(2)).*cos(w.*t2) - (2*v2(1)).*sin(w.*t2) - (6*w*x2 + 3*v2(2));
zdot3 = (-w*z2).*sin(w.*t2) + v2(3).*cos(w.*t2);
%% Part3 Added
t3 = [(t_prt2+1):t_prt3]'; %[s], defining time for 3rd stage of calc
%t3 = [linspace(t_prt2+1,t_prt3)]';
v3 = ((m1+m2+m3)/(m1+m2+m3+m4)).*[xdot3,ydot3,zdot3]; %Momentum transfer - Part3 added to Part1&Part2
x4 = (v3(1)/w).*sin(w.*t3) - (3*x3 + 2*v3(2)/w).*cos(w.*t3)+(4*x3 + 2*v3(2)/w);
y4 = (6*x3 + 4*v3(2)/w).*sin(w.*t3)+(2*v3(1)/w).*cos(w.*t3)-(6*w*x3 + 3*v3(2)).*t3+(y3-2*v3(1)/w);
z4 = z3.*cos(w.*t3) + (v3(3)/w).*sin(w.*t3);
xdot4 = v3(1).*cos(w.*t3) + (3*w*x3 + 2*v3(2)).*sin(w.*t3);
ydot4 = (6*w*x3 + 4*v3(2)).*cos(w.*t3) - (2*v3(1)).*sin(w.*t3) - (6*w*x3 + 3*v3(2));
zdot4 = (-w*z3).*sin(w.*t3) + v3(3).*cos(w.*t3);

Sign in to comment.

Answers (1)

Dinesh
Dinesh on 18 Sep 2023
Hi Jude
I understand that you are trying to substitute the value of 't' in the long complicated equation that you have. You can achieve this by using the 'subs' function, which is a symbolic substitution function in MATLAB.
The 'subs' function allows you to substitute the value of a variable in an equation and returns the result. Here is an example to illustrate its usage:
syms a b
% replace a with 4
subs(a + b,a,4)
ans = 
% equation = (a * b * b). (a * b) gets replaced with value 5.
subs(a*b^2,a*b,5)
ans = 
For more details regarding the subs function please refer the following MATLAB documentation
  1. https://in.mathworks.com/help/symbolic/subs.html
Hope this helps.
Best regards
Dinesh Reddy Gatla.

Products


Release

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!