How to find the optimum initial value while with the convergence?
2 views (last 30 days)
Show older comments
Hi, I have problem regarding with my system. I am trying to find the two optimum value of "ecci" and "mis_angle" that are within the range of some limits while converging the out put value values which are F_tot and M_tot to the F_app and M_app with the 10e-3 tolerance. However, I could not solve the problem or create looping system that satisfy the condition. I need to first converge the "load_tol=abs(F_app-F_tot)/F_tot; value" than, the mom_tol=abs(M_app-M_tot)/M_tot; however I could not manage the coding? Can someone help me to find the optimized value of ecci and mis_angle??
close all;
clc;
clear all;
%CALCULATION AND OPERATION PARAMETERS
ni=79; % number of node points in circumferential-direction
nj=79; % number of node points in L-direction
hi=2*ni-1; % number of height node’s in circumferential-direction
hj=2*nj-1; % number of height node’s in L-direction
R=180e-3; % raduis of the bearing (m)
Pout=0.0; % pressure at outer boundary (top in z) (pa)
Pin=0.0; % pressure at inner boundary (bottom in z)
Pini=0; % inital guess at pressures (pa)
Pcav=0.0; % cavitation pressure (pa)
C=0.14e-3; % journal bearing clearance (m)
e_crit=1e-12; % convergence criteria
iteration=100000; % max number of iterations
ecci=0.8; %0.75:0.001:0.95; % eccentrcity ratio e/c
t=140e-3; % 1/2 bearing length (m)
L=2*t; % bearing length
mu=0.09; % viscosity (Pa.s)
N_rpm=43; % velocity (rpm)
omega=2*pi*N_rpm/60; % angular velocity (rad/sec)
U=omega*R;
B=L/R;
F_app=2e5; % applied load
M_app=4e3; % applied moment
%MISASLIGNMENT PARAMETERS
mis_angle=0.02; %0.01:0.001:0.03; % misalignmend angle
ecci_star=tand(mis_angle)*L/C; % eccentricity on the
alfa=pi/2;
fi_0=pi/2;
%GRID PARAMETERS AND NON DIMENSIONAL PARAMETER
% dimensional direction
Lx=2*pi*R; dx=Lx/(ni-1); x=0:dx/2:Lx; % Circumferential direction
Ly=L; dy=Ly/(nj-1); y=0:dy/2:Ly; % Length direction
% non-dimentional direction
Lxn=Lx/R; dxn=dx/R; xn=x/R;
Lyn=Ly/L; dyn=dy/L; yn=y/L;
%FILM THICKNESS OF FLUID MECHANISM
[h_film] = film_misal(xn,yn,y,C,ecci,ecci_star,alfa,fi_0);
%FILM THICKNESS PARAMETERS FOR FURTHER CALCULATION
h_film_non=h_film./C; % non dimensionalized film thickness
%PRESSURE SOLVER
[P_solve,P_solution,e_error]=Press_solv(ni,nj,Pini,dxn,dyn,h_film_non,mu,Pcav,B,omega,R,C,e_crit,iteration);
%PERFORMANCE PARAMETERS
%Load Carrying capacity, misalignment moment and attitude angle
[F_T_bar,F_R_bar,Fx,Fy,F_tot,att_angle,att_sig,act_angle,M_x,M_y,M_tot,M_ang]=Load_mom_cap(ni,nj,dxn,dyn,Lxn,Lyn,mu,omega,R,C,Ly,P_solve);
load_tol=abs(F_app-F_tot)/F_tot;
mom_tol=abs(M_app-M_tot)/M_tot;
function[h_film] = film_misal(xn,yn,y,C,ecci,ecci_star,alfa,fi_0)
h_film_func = @(xn,y)(1+ecci*cos(xn-fi_0)+ecci_star*(yn-0.5)'*cos(xn-alfa-fi_0));
h_film = h_film_func(xn,y)';
h_film=h_film*C;
end
function[P_solve,P_solution,e_error]=Press_solv(ni,nj,Pini,dxn,dyn,h_film_non,mu,Pcav,B,omega,R,C,e_crit,iteration)
for i=1:ni
for j=1:nj
P(i,j)=Pini;
end
end
hhminus_i = zeros(size(P));
for i=2:ni-1
for j=2:nj-1
hhminus_i(i,j)= h_film_non(2*i-2,2*j-1);
end
end
hhplus_i = zeros(size(P));
for i=2:ni-1
for j=2:nj-1
hhplus_i(i,j)= h_film_non(2*i,2*j-1);
end
end
hhminus_j = zeros(size(P));
for i=2:ni-1
for j=2:nj-1
hhminus_j(i,j)= h_film_non(2*i-1,2*j-2);
end
end
hhplus_j = zeros(size(P));
for i=2:ni-1
for j=2:nj-1
hhplus_j(i,j)= h_film_non(2*i-1,2*j);
end
end
for i=1:1:ni
for j=1:1:nj
B_B(i,j)=(1/(dxn^2)*(hhminus_i(i,j)^3));
A_A(i,j)=(1/(dxn^2)*(hhplus_i(i,j)^3));
F_F(i,j)=(1/(dyn^2)*(hhminus_j(i,j)^3)*1/(B^2));
E_E(i,j)=(1/(dyn^2)*(hhplus_j(i,j)^3)*1/(B^2));
D_D(i,j)=B_B(i,j)+A_A(i,j)+F_F(i,j)+E_E(i,j);
G_G(i,j)=((1/dxn)*(hhplus_i(i,j)-hhminus_i(i,j)));
end
end
count=0;
for k=1:iteration
count=count+1
for ii=2:nj-1
for jj=2:ni-1
P(ii,jj)=1/D_D(ii,jj)*(B_B(ii,jj)*P(ii-1,jj)...
+A_A(ii,jj)*P(ii+1,jj)...
+F_F(ii,jj)*P(ii,jj-1)...
+E_E(ii,jj)*P(ii,jj+1)...
-G_G(ii,jj));
if P(ii,jj) <0
P(ii,jj) =0;
end
end
end
e_error = (sum(P(:)) - sum(Pini(:)))/sum(P(:));
Pini=P;
if e_error< e_crit
break;
end
end
for ii=1:ni
for jj=1:nj
P_solve(ii,jj)=P(ii,jj);
end
end
%Reynolds Cavitation Condition
for ii=1:ni
for jj=1:nj
if P_solve(ii,jj)<Pcav
P_solve(ii,jj)=Pcav;
end
end
end
P_solution=P_solve.*6.*mu.*omega.*(R^2./C.^2);
end
function [F_T_bar,F_R_bar,Fx,Fy,F_tot,att_angle,att_sig,act_angle,M_x,M_y,M_tot,M_ang]=Load_mom_cap(ni,nj,dxn,dyn,Lxn,Lyn,mu,omega,R,C,Ly,P_solve)
x_phi=0:dxn:Lxn;
y_non=0:dyn:Lyn;
x_cos=cos(x_phi);
x_sin=sin(x_phi);
ni_even=ni-1;
ni_odd=ni-2;
nj_even=nj-1;
nj_odd=nj-2;
for i=1:ni
P_bar(i)=P_solve(i,1)+P_solve(i,nj); % sum the first and last term
for j=2:2:nj_even % add in the even terms
P_bar(i)=P_bar(i)+2*P_solve(i,j);
end
for j=3:2:nj_odd % add in the odd terms
P_bar(i)=P_bar(i)+4*P_solve(i,j);
end
end
for i=1:ni
R_bar=P_bar(1)*x_cos(1)+P_bar(ni)*x_cos(ni); % sum the first and last term
for i=2:2:ni_even % add in the even terms
R_bar=R_bar+2*(P_bar(i)*x_cos(i));
end
for i=3:2:ni_odd % add in the odd terms
R_bar=R_bar+4*(P_bar(i)*x_cos(i));
end
end
for i=1:ni
T_bar=P_bar(1)*x_sin(1)+P_bar(ni)*x_sin(ni); % sum the first and last term
for i=2:2:ni_even % add in the even terms
T_bar=T_bar+2*(P_bar(i)*x_sin(i));
end
for i=3:2:ni_odd % add in the odd terms
T_bar=T_bar+4*(P_bar(i)*x_sin(i));
end
end
% Load carrying capacity with Simpson 1/3 Rule
F_R_bar=(dxn/3)*(dyn/3)*R_bar*6*omega*mu*(R^2/C^2)*Ly*R;
F_T_bar=(dxn/3)*(dyn/3)*T_bar*6*omega*mu*(R^2/C^2)*Ly*R;
F_tot=sqrt(F_R_bar^2+F_T_bar^2);
att_sig=atand(abs(F_T_bar/F_R_bar));
att_angle=(1-sign(F_R_bar))*90+sign(F_R_bar)*sign(F_T_bar)*att_sig;
%Acting angle
if F_R_bar>=0
act_angle=180-asind(F_T_bar/F_tot);
end
if F_R_bar<=0
act_angle=asind(F_T_bar/F_tot);
end
Fx=F_T_bar*cosd(act_angle)+F_R_bar*sind(act_angle);
Fy=F_T_bar*sind(act_angle)-F_R_bar*cosd(act_angle);
func_tht_ang=abs(Fx/Fy);
%%% Misalignment Moment
y_mom=y_non-0.5;
P_mom_solve=P_solve.*y_mom;
for i=1:ni
M_bar(i)=P_mom_solve(i,1)+P_mom_solve(i,nj); % sum the first and last term
for j=2:2:nj_even % add in the even terms
M_bar(i)=M_bar(i)+2*P_mom_solve(i,j);
end
for j=3:2:nj_odd % add in the odd terms
M_bar(i)=M_bar(i)+4*P_mom_solve(i,j);
end
end
for i=1:ni
MT_bar=M_bar(1)*x_cos(1)+M_bar(ni)*x_cos(ni); % sum the first and last term
for i=2:2:ni_even % add in the even terms
MT_bar=MT_bar+2*(M_bar(i)*x_cos(i));
end
for i=3:2:ni_odd % add in the odd terms
MT_bar=MT_bar+4*(M_bar(i)*x_cos(i));
end
end
for i=1:ni
MR_bar=M_bar(1)*x_sin(1)+M_bar(ni)*x_sin(ni); % sum the first and last term
for i=2:2:ni_even % add in the even terms
MR_bar=MR_bar+2*(M_bar(i)*x_sin(i));
end
for i=3:2:ni_odd % add in the odd terms
MR_bar=MR_bar+4*(M_bar(i)*x_sin(i));
end
end
M_x=(dxn/3)*(dyn/3)*MR_bar*6*omega*mu*(R^2/C^2)*Ly^2*R;
M_y=(dxn/3)*(dyn/3)*MT_bar*6*omega*mu*(R^2/C^2)*Ly^2*R;
M_tot=sqrt(M_x^2+M_y^2);
M_star=atand(abs(M_x/M_y));
M_ang=(1-sign(M_y))*90+sign(M_y)*sign(M_x)*M_star;
end
0 Comments
Answers (1)
Anurag Ojha
on 23 Jan 2024
Hello Sami
In order to find the optimized value of “ecci” and “mis_angle” you can use genetic algorithm. We can utilize the Genetic Algorithm to systematically explore the parameter space and identify the most effective values for "ecci" and "mis_angle" that minimize both load and moment errors.
The first step is to define an objective function that evaluates the performance of a system for a given set of parameters (“ecci” and “mis_angle”).
Adding a sample code for your reference:
function error = optimizationObjective(params, ni, nj, dxn, dyn, Lxn, Lyn, mu, omega, R, C, Ly, P_solve, F_app, M_app)
ecci = params(1);
mis_angle = params(2);
ecci_star = tand(mis_angle) * L / C;
% Call your existing functions to calculate F_tot and M_tot
[~, ~, ~, ~, F_tot, ~, ~, ~, ~, ~, M_tot, ~] = Load_mom_cap(ni, nj, dxn, dyn, Lxn, Lyn, mu, omega, R, C, Ly, P_solve, ecci, ecci_star);
% Calculate convergence errors
load_tol = abs(F_app - F_tot) / F_tot;
mom_tol = abs(M_app - M_tot) / M_tot;
% Combine errors into a single objective value
error = load_tol + mom_tol;
end
Now, use the Genetic Algorithm to search for optimal values of “ecci” and “mis_angle”.
% Define the optimization problem
options = optimoptions('ga', 'Display', 'iter');
lb = [0.75, 0.01]; % Lower bounds for ecci and mis_angle
ub = [0.95, 0.03]; % Upper bounds for ecci and mis_angle
% Run the genetic algorithm
[optimalParams, optimalError] = ga(@(params) optimizationObjective(params, ni, nj, dxn, dyn, Lxn, Lyn, mu, omega, R, C, Ly, P_solve, F_app, M_app), 2, [], [], [], [], lb, ub, [], options);
% Display the optimal parameters
disp('Optimal Parameters:');
disp(['ecci: ', num2str(optimalParams(1)), ', mis_angle: ', num2str(optimalParams(2))]);
disp(['Optimal Error: ', num2str(optimalError)]);
Adding MATLAB Documentation to get better understanding of genetic algorithm:
0 Comments
See Also
Categories
Find more on Genetic Algorithm in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!