Im trying to find the zeroes of the two lines on the graphs I've made
1 view (last 30 days)
Show older comments
Nickolas Marcove
on 8 Feb 2022
Answered: Star Strider
on 9 Feb 2022
I've looked around a bit and either I haven't been putting in stuff the right way or I haven't found the help I'm looking for. I am making plots for the power a solar collector collects through out a day. I need to find where the lines hit 0 on the x axis so I can determine sunrise and sunset of each line so I can intergrate for the day. The last few lines are a piece I couldn't get to work properly. This is what I have so far:
n = 32;
S = 23.45*sind(360*(284 + n)/365);
phi = 38.9072;
tsol = 0:1/60:24;
w = 15*(tsol-12);
Gsc = 1353;
Go = Gsc*(1 + 0.033*cosd((360*n)/365))*(cosd(phi)*cosd(S)*cosd(w) + sind(phi)*sind(S));
plot(tsol,Go)
hold on
Y = 30;
B = 50;
theta1 = sind(S)*sind(phi)*cosd(B) - sind(S)*cosd(phi)*sind(B)*cosd(Y) + cosd(S)*cosd(phi)*cosd(B)*cosd(w)+ cosd(S)*sind(phi)*sind(B)*cosd(Y)*cosd(w) + cosd(S)*sind(B)*sind(Y)*sind(w);
Got = Gsc*(1 + 0.033*cosd((360*n)/365))*theta1;
plot(tsol,Got)
hold off
grid on
title('Homework #3, Question 1b')
xlabel('Time of day (Hours)')
ylabel('Solar Radiation on horizontal plane')
xlim([0 24])
legend('Horrizontal','Angled')
syms tsol Go
tsol = solve([0 == Gsc*(1 + 0.033*cosd((360*n)/365))*(cosd(phi)*cosd(S)*cosd(w) + sind(phi)*sind(S))-Go], tsol)
0 Comments
Accepted Answer
Star Strider
on 9 Feb 2022
Another approach —
n = 32;
S = 23.45*sind(360*(284 + n)/365);
phi = 38.9072;
tsol = 0:1/60:24;
w = 15*(tsol-12);
Gsc = 1353;
Go = Gsc*(1 + 0.033*cosd((360*n)/365))*(cosd(phi)*cosd(S)*cosd(w) + sind(phi)*sind(S));
plot(tsol,Go)
hold on
Y = 30;
B = 50;
theta1 = sind(S)*sind(phi)*cosd(B) - sind(S)*cosd(phi)*sind(B)*cosd(Y) + cosd(S)*cosd(phi)*cosd(B)*cosd(w)+ cosd(S)*sind(phi)*sind(B)*cosd(Y)*cosd(w) + cosd(S)*sind(B)*sind(Y)*sind(w);
Got = Gsc*(1 + 0.033*cosd((360*n)/365))*theta1;
plot(tsol,Got)
Go_idx = find(diff(sign(Go))); % Approximate Indices
for k = 1:numel(Go_idx)
idxrng = max([1,Go_idx(k)-1]) : min([numel(Go),Go_idx(k)+1]); % Index Range For Interpolation
Go_t(k) = interp1(Go(idxrng), tsol(idxrng), 0); % Precise Values
end
Got_idx = find(diff(sign(Got))); % Approximate Indices
for k = 1:numel(Got_idx)
idxrng = max([1,Got_idx(k)-1]) : min([numel(Got),Got_idx(k)+1]); % Index Range For Interpolation
Got_t(k) = interp1(Got(idxrng), tsol(idxrng), 0); % Precise Values
end
plot([Go_t Got_t], zeros(1,numel(Go_t)+numel(Got_t)), '+k','MarkerSize',10)
hold off
grid on
title('Homework #3, Question 1b')
xlabel('Time of day (Hours)')
ylabel('Solar Radiation on horizontal plane')
xlim([0 24])
legend('Horrizontal','Angled')
syms tsol Go
tsol = solve([0 == Gsc*(1 + 0.033*cosd((360*n)/365))*(cosd(phi)*cosd(S)*cosd(w) + sind(phi)*sind(S))-Go], tsol)
.
0 Comments
More Answers (2)
Turlough Hughes
on 8 Feb 2022
x = linspace(-1.5*pi,1.5*pi,1000);
y = sin(x);
figure(), plot(x,y);
[xi, yi] = polyxpoly(x,y,x,zeros(size(x)));
hold on, plot(xi,yi,'ok','MarkerFaceColor','k')
0 Comments
dpb
on 8 Feb 2022
I lack symbolic TB, but it's easy enough to just find the crossing point from linear interpolation. MATLAB interp1 requires a unique sorted variable as its independent, so to do the backwards interpolation to find x given y with a double-valued function, have to segregate the regions -- again, this is easy enough.
Since is HM, I'll only show the result; you're honor-bound to determine how it works and submit your own version... :)
iz1=find(Got>0,1);
iz2=find(Got>0,1,'last');
tZ1=interp1(Got(iz1-1:iz1),tsol(iz1-1:iz1),0);
tZ2=interp1(Got(iz2:iz2+1),tsol(iz2:iz2+1),0)
xline(tZ1,'r:')
xline(tZ2,'r:')
0 Comments
See Also
Categories
Find more on Interpolation in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!