how can I write my function in terms of code using Finite difference method (FDM) to obtain these curves at time, t=0 and time, t=2?

1 view (last 30 days)
% Initialization
Nx= 480; % x-Grid
dx= 3/480; % Step size
x(:,1)= (0:Nx-1)*dx;
f= 125.7; % Wave number
U(:,1)= -16*(x(:,1)-1/2).^2
% U(:,1) = exp(-16*(x(:,1)-1/2).^2);
U(:,1)= exp(U(:,1));
U(:,1)= U(:,1).*sin(f*x(:,1))
%U(:,1)= exp(-16*(x(:,1)-1/2).^2)%sin*(f*x(:,1))
%U(:,1)= U(:,1).*sin(f*x(:,1))
mpx= (Nx+1)/2; % Mid point of x-axis
% (Mid point of 1 to 3= 2 here)
T= 10; % Total no. of time step
f= 125.7; % Wave number
dt= 0.000625; % time-step
t(:,1)= (0:T-1)*dt;
v= 1; % wave velocity
c=v*(dt/dx); % CFL condition
s1= floor(T/f);

Accepted Answer

David Hill
David Hill on 29 Jan 2022
x=0:.001:3;
u=@(t)exp(-16*(x-(.75*t+.5)).^2).*sin(125.7*x);
plot(x,u(0))
figure
plot(x,u(2))

More Answers (0)

Categories

Find more on Networks in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!