- “YL(2)” represents (y'(0)) from the left side. Adjust according to your problem's specifics and how your differential equations are structured.
- Continuity conditions and boundary conditions are correctly defined for your problem's context.
Problems with a Multiple Boundary Value Problem
3 views (last 30 days)
Show older comments
Hi everyone,
currently, I'm trying to find a solution for a Multiple Boundary Value Problem; in particular, I cannot find out a way to impose:
y'(0)=0 (where argument zero is the center of the entire interval, which is also the point xc inthe following code where I split in two separate intervals) :: the problem has been highlighted in the following code lines with "???" as a comment (bottom of the code, in bc function).
Here I attach the entire code:
clear all,clc,close
%% Define the mesh and initial guess
alpha=pi/6;
xc = 0; %define the midpoint where the additional b.c. has to be set
n_tot_nodes=100; %number of nodes to be used for overall computation
I=[-alpha alpha]; %overall interval where ODE solution is requested
xmesh_A=linspace(I(1),xc,floor(n_tot_nodes/2)); %first interval for ODE solution
xmesh_B=linspace(xc,I(2),floor(n_tot_nodes/2)); %second interval for ODE solution
xmesh=[xmesh_A xmesh_B]; %total interval for ODE solution (xc repreated)
yinit = [-0.2; 0.1; 0.3]; %define the initial vector
sol = bvpinit(xmesh,yinit); %define the initial guess on the mesh
sol = bvp5c(@(x,y,r) funzione(x,y,r), @bc, sol); %solve the BVP
%% LOCAL FUNCTIONS FOR MBVP SOLUTION
function dydx = funzione(x,y,region) % equations to be solved (in proper intervals)
dydx=zeros(3,1);
dydx(1)=y(1);
dydx(2)=y(2);
switch region %interval switch
case 1 % x in [0 xc]
dydx(3)=-(y(2).^5.*cos(x).^2.*-3.675715394304492e+17+y(2).^5.*sin(x).^2.*6.248716170317636e+18+y(2).*cos(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*4.34805803763114e+28-y(1).^2.*y(2).^3.*cos(x).^2.*8.82171694633078e+18-y(2).*sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*2.17402901881557e+29-y(1).^5.*cos(x).*sin(x).^2.*6.351636201358161e+20+y(1).^2.*y(2).^3.*sin(x).^2.*1.499691880876233e+20+y(2).^3.*y(3).^2.*sin(x).^2.*7.351430788608983e+17+y(2).^3.*cos(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*1.667553788025104e+19-y(2).^3.*sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*1.834309166827614e+20-y(1).^4.*y(2).*cos(x).^2.*5.293030167798468e+19+y(1).^5.*cos(x).*sin(x).*6.351636201358161e+20+y(1).^4.*y(2).*sin(x).^2.*1.534978748661556e+21+y(1).^2.*y(2).*cos(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*2.001064545630125e+20-y(1).^3.*cos(x).*sin(x).*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*3.601916182134225e+21+y(1).*cos(x).*sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*2.608834822578684e+29-y(1).^2.*y(2).*sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*1.420755827397389e+22-y(2).*y(3).^2.*sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*1.000532272815062e+20-y(1).^3.*y(2).^2.*cos(x).*sin(x).^2.*1.058606033559694e+20+y(1).*y(2).^4.*cos(x).*sin(x).*8.82171694633078e+18+y(1).^4.*y(3).*cos(x).*sin(x).*5.293030167798468e+19+y(2).^4.*y(3).*cos(x).*sin(x).*7.351430788608983e+17+y(1).*y(2).^3.*y(3).*sin(x).^2.*1.323257541949617e+19+y(1).^3.*y(2).*y(3).*sin(x).^2.*2.646515083899234e+20+y(1).^3.*cos(x).*sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*3.601916182134225e+21-y(1).*cos(x).*sin(x).*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*2.608834822578684e+29-y(3).*cos(x).*sin(x).*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*4.34805803763114e+28+y(1).^3.*y(2).^2.*cos(x).*sin(x).*1.58790905033954e+20-y(1).*y(2).^4.*cos(x).*sin(x).^2.*4.41085847316539e+18+y(1).^2.*y(2).*y(3).^2.*sin(x).^2.*1.323257541949617e+19-y(1).*y(2).*y(3).*sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*2.601383909319162e+21+y(1).^2.*y(2).^2.*y(3).*cos(x).*sin(x).*1.323257541949617e+19-y(1).*y(2).^2.*cos(x).*sin(x).*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*7.003725909705437e+20-y(1).^2.*y(3).*cos(x).*sin(x).*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*2.001064545630125e+20-y(2).^2.*y(3).*cos(x).*sin(x).*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*5.002661364075312e+19+y(1).*y(2).^2.*cos(x).*sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*3.001596818445187e+20)./(y(1).^4.*sin(x).^2.*5.293030167798468e+19+y(2).^4.*sin(x).^2.*7.351430788608983e+17-sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*4.34805803763114e+28+y(1).^2.*y(2).^2.*sin(x).^2.*1.323257541949617e+19-y(1).^2.*sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*2.001064545630125e+20-y(2).^2.*sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*5.002661364075312e+19);
case 2 % x in [xc 2]
dydx(3)=-(y(2).^5.*cos(x).^2.*-3.675715394304492e+17+y(2).^5.*sin(x).^2.*6.248716170317636e+18+y(2).*cos(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*4.34805803763114e+28-y(1).^2.*y(2).^3.*cos(x).^2.*8.82171694633078e+18-y(2).*sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*2.17402901881557e+29-y(1).^5.*cos(x).*sin(x).^2.*6.351636201358161e+20+y(1).^2.*y(2).^3.*sin(x).^2.*1.499691880876233e+20+y(2).^3.*y(3).^2.*sin(x).^2.*7.351430788608983e+17+y(2).^3.*cos(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*1.667553788025104e+19-y(2).^3.*sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*1.834309166827614e+20-y(1).^4.*y(2).*cos(x).^2.*5.293030167798468e+19+y(1).^5.*cos(x).*sin(x).*6.351636201358161e+20+y(1).^4.*y(2).*sin(x).^2.*1.534978748661556e+21+y(1).^2.*y(2).*cos(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*2.001064545630125e+20-y(1).^3.*cos(x).*sin(x).*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*3.601916182134225e+21+y(1).*cos(x).*sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*2.608834822578684e+29-y(1).^2.*y(2).*sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*1.420755827397389e+22-y(2).*y(3).^2.*sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*1.000532272815062e+20-y(1).^3.*y(2).^2.*cos(x).*sin(x).^2.*1.058606033559694e+20+y(1).*y(2).^4.*cos(x).*sin(x).*8.82171694633078e+18+y(1).^4.*y(3).*cos(x).*sin(x).*5.293030167798468e+19+y(2).^4.*y(3).*cos(x).*sin(x).*7.351430788608983e+17+y(1).*y(2).^3.*y(3).*sin(x).^2.*1.323257541949617e+19+y(1).^3.*y(2).*y(3).*sin(x).^2.*2.646515083899234e+20+y(1).^3.*cos(x).*sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*3.601916182134225e+21-y(1).*cos(x).*sin(x).*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*2.608834822578684e+29-y(3).*cos(x).*sin(x).*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*4.34805803763114e+28+y(1).^3.*y(2).^2.*cos(x).*sin(x).*1.58790905033954e+20-y(1).*y(2).^4.*cos(x).*sin(x).^2.*4.41085847316539e+18+y(1).^2.*y(2).*y(3).^2.*sin(x).^2.*1.323257541949617e+19-y(1).*y(2).*y(3).*sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*2.601383909319162e+21+y(1).^2.*y(2).^2.*y(3).*cos(x).*sin(x).*1.323257541949617e+19-y(1).*y(2).^2.*cos(x).*sin(x).*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*7.003725909705437e+20-y(1).^2.*y(3).*cos(x).*sin(x).*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*2.001064545630125e+20-y(2).^2.*y(3).*cos(x).*sin(x).*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*5.002661364075312e+19+y(1).*y(2).^2.*cos(x).*sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*3.001596818445187e+20)./(y(1).^4.*sin(x).^2.*5.293030167798468e+19+y(2).^4.*sin(x).^2.*7.351430788608983e+17-sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*4.34805803763114e+28+y(1).^2.*y(2).^2.*sin(x).^2.*1.323257541949617e+19-y(1).^2.*sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*2.001064545630125e+20-y(2).^2.*sin(x).^2.*(y(1).^2.*7.68e-4+y(2).^2./1.5625e+4).^(3.0./2.0).*5.002661364075312e+19);
end
end
%-------------------------------------------
function res = bc(YL,YR) % boundary conditions (in proper intervals)
Q=1e-9;
res = [YL(1,1) % y_1_sx_(-alpha)= 0
------- %???
YR(1,1) - YL(1,2) % Continuity of y_1_(x) at x=0
YR(2,1) - YL(2,2) % Continuity of y_2_(x) at x=0
YR(3,1) - YL(3,2) % Continuity of y_3_(x) at x=0
YR(1,2)]; % y_1_dx_(alpha) = 0
end
%-------------------------------------------
Thanks in advance to everyone that will help with this problem. Best regards.
0 Comments
Answers (1)
Abhinaya Kennedy
on 27 Mar 2024
Hi Alessio,
To impose the condition (y'(0) = 0) for a boundary value problem in MATLAB, you can modify the boundary condition function “bc” to include this derivative condition. Assuming “y'(0) = 0” applies to the first component of your solution vector “y” and considering you're dealing with continuity at “xc = 0”, here's an altered version of your “bc” function:
function res = bc(YL,YR)
res = [YL(1); % Left boundary condition for y
YL(2); % y'(0) = 0, assuming YL(2) represents this derivative
YR(1) - YL(1); % Continuity of y at x=0
YR(2) - YL(2); % Continuity of y' at x=0, if applicable
YR(3) - YL(3); % Additional continuity conditions, if any
YR(1)]; % Right boundary condition for y
end
This assumes:
This link will give you more insights into solving boundary value problems with multiple boundary conditions:
Hope this helps!
0 Comments
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!