How to include variable offsets in polynomial equations

2 views (last 30 days)
I am attempting to display a series of equations, of which some need offsets to the variable. The equations are (at maximum) cubic polynomials, however some require an offset while others do not.
No offset: a*t^3 + d
Offset: a*(t-5)^3 + b(t-5)^2 + d
The offset will be the constant in each polynomial.
Is there an easy way to apply this? Code is given below, the offset of each polynomial is equal to t_0 of the function. So for segment 2, the offset is t_1 should be shown as (t-2)^n in the polynomial:
clear all;
clc;
syms t real;
% Position in [deg deg m]
q_0 = [0 0 0]';
q_1 = [-8 45 0.2]';
q_2 = [-90 90 0.4]';
% Speeds in [deg/s deg/s m/s]
q_dot_0 = [0 0 0]';
q_dot_1 = [10 40 0.2]';
q_dot_2 = [0 0 0]';
% Times in s
t_0 = 0;
t_1 = 2;
t_2 = 4;
coefficients = zeros(2,4,3);
% Segment 1: 0 < t < 2
coefficients(1,:,1) = cpsCoefficients(q_0(1), q_1(1), q_dot_0(1), q_dot_1(1), t_0, t_1);
coefficients(1,:,2) = cpsCoefficients(q_0(2), q_1(2), q_dot_0(2), q_dot_1(2), t_0, t_1);
coefficients(1,:,3) = cpsCoefficients(q_0(3), q_1(3), q_dot_0(3), q_dot_1(3), t_0, t_1);
% Segment 2: 2 < t < 4
coefficients(2,:,1) = cpsCoefficients(q_1(1), q_2(1), q_dot_1(1), q_dot_2(1), t_1, t_2);
coefficients(2,:,2) = cpsCoefficients(q_1(2), q_2(2), q_dot_1(2), q_dot_2(2), t_1, t_2);
coefficients(2,:,3) = cpsCoefficients(q_1(3), q_2(3), q_dot_1(3), q_dot_2(3), t_1, t_2);
eqn(1,1) = vpa(poly2sym(fliplr(coefficients(1,:,1)),t));
eqn(2,1) = vpa(poly2sym(fliplr(coefficients(2,:,1)),t));
eqn(3,1) = vpa(poly2sym(fliplr(coefficients(1,:,2)),t));
eqn(4,1) = vpa(poly2sym(fliplr(coefficients(2,:,2)),t));
eqn(5,1) = vpa(poly2sym(fliplr(coefficients(1,:,3)),t));
eqn(6,1) = vpa(poly2sym(fliplr(coefficients(2,:,3)),t));
eqn = string(eqn); %For table display purposes
table_segment_1 = table(eqn(1:2), eqn(3:4), eqn(5:6),'RowNames',{'Segment 1 (0 < t < 2)','Segment 2 (2 < t < 4)'},'VariableNames',{'Joint 1','Joint 2','Joint 3'});
disp(table_segment_1);
function [coeffs] = cpsCoefficients(theta_0, theta_f, theta_dot_0, theta_dot_f, t_0, t_f)
%Calculates and returns the CPS coefficients
a0 = theta_0;
a1 = theta_dot_0;
a2 = (3*(theta_f-theta_0)-(2*theta_dot_0+theta_dot_f)*t_f)/t_f;
a3 = (2*(theta_0-theta_f)+(theta_dot_0+theta_dot_f)*(t_f-t_0))/((t_f-t_0)^3);
coeffs = [a0 a1 a2 a3];
end

Accepted Answer

Bjorn Gustavsson
Bjorn Gustavsson on 4 Nov 2021
Have a look at the help and documentation of taylor. That should help you a good part of the way - especially if you use the 'expansionpoint' variable you will get rather close to what you want:
>> syms X
>> A = sym('A',[1,4]);
>> f = A(1) + A(2)*X + A(3)*X^2 + A(4)*X^3;
>> asd = taylor(f,X,'expansionpoint',5);
% Returns
%
% asd =
% A1 + 5*A2 + 25*A3 + 125*A4 + (A3 + 15*A4)*(X - 5)^2 + A4*(X - 5)^3 + (X - 5)*(A2 + 10*A3 + 75*A4)
a0 = 12;
a1 = 7;
a2 = 5;
a3 = -3;
zxc = subs(asd,A,[a0 a1 a2 a3]);
% Returns:
% zxc =
%
% 637 - 40*(X - 5)^2 - 3*(X - 5)^3 - 168*X
HTH
  4 Comments

Sign in to comment.

More Answers (0)

Categories

Products


Release

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!