FItting 3d with fourier

2 views (last 30 days)
Vincenzo Senatore
Vincenzo Senatore on 27 Oct 2021
Commented: sandesh amgai on 13 Sep 2022
Hi everyone,
i'm working at a project in which i got a modelled velocity look like fitted by Fourier8, i have a lot of data and i need to fit u=f(y,z) of the file uploaded , can someone help me please?
Thanks in advance
BEST regards,
  1 Comment
Vincenzo Senatore
Vincenzo Senatore on 27 Oct 2021
here i link a text in which there is the kind of equation that i would like to obtain

Sign in to comment.

Accepted Answer

Alex Sha
Alex Sha on 28 Oct 2021
If taking the fitting function as:
the result will be:
Root of Mean Square Error (RMSE): 0.000481289122874164
Sum of Squared Residual: 8.10737269289438E-6
Correlation Coef. (R): 0.999538609101962
R-Square: 0.999077431085486
Parameter Best Estimate
---------- -------------
a1 0.0031488389071083
b1 6601.65334793348
c1 -20970.8542584731
a2 -0.132911397446423
b2 3766.85965070268
c2 -1351.15719981604
a3 -0.00321037434029533
b3 -3711.04888391542
c3 10020.2474994826
a4 0.0506407098493067
b4 1263.92176950354
c4 -6128.76676017437
a5 0.00301960797708877
b5 -63934.3471383267
c5 -1699.94515972645
  2 Comments
Vincenzo Senatore
Vincenzo Senatore on 28 Oct 2021
Wow, great job
did you used curve fitting toolbox, or did you wrote a code?
If you have a code can pls show me?
Thanks so much
Vincenzo Senatore
Vincenzo Senatore on 29 Oct 2021
Edited: Vincenzo Senatore on 30 Oct 2021
sorry but this is my real workspace , with V=f(y,z), if you find other time pls can u help me with the real case because i didn't understand that u were solving it and i wasn't able to load the full text,
THanks so much,
Best regards.

Sign in to comment.

More Answers (1)

Alex Sha
Alex Sha on 28 Oct 2021
Hi, give your data as text format, not a picture just.
  2 Comments
Vincenzo Senatore
Vincenzo Senatore on 28 Oct 2021
% x y z u (m/s)
0.07500000000000001 9.98714572960106E-4 9.971543853941147E-4 0.03497429528800376
0.07487836833071332 9.936173372382116E-4 0.001008395852156714 0.03425689650784324
0.07500000000000001 0.0011403846071430092 0.0011403846071430092 0.008672067315736217
0.07500000000000001 0.0011417396108193822 8.967676127441027E-4 0.022889195836208607
0.07500000000000001 8.925655110220609E-4 0.0011357105402171853 0.022610070526922012
0.07482614950059001 9.636210303086351E-4 0.0011381209914482714 0.018400077633201586
0.07500000000000001 0.0010162667564994627 -0.001005663703866723 0.03124113446072542
0.07500000000000001 8.98404185718329E-4 -0.0011446537282721796 0.021959332761722208
0.07482607729734343 9.683904737601536E-4 -0.0011448346957637235 0.01790950047084396
0.07500000000000001 0.0011451096607011358 -0.0011451096607011356 0.007245189125480443
0.07482614950059001 0.00114561961353975 -9.689427400601984E-4 0.018583371152898324
0.07500000000000001 0.001145570437911778 -8.990465407303232E-4 0.0218301089252804
0.07500000000000001 9.82776685711893E-4 -8.092939760187956E-4 0.05422203391372652
0.07480937195502717 0.0011461334305731426 -7.694895640488774E-4 0.02493505773762861
0.07500000000000001 0.0011436952545670548 -6.447279202456797E-4 0.02940551646959344
0.07500000000000001 8.10410562638383E-4 -9.837972212583417E-4 0.05397984644074038
0.07500000000000001 -0.0010114764148818703 0.0010075276968973005 0.032996894970589434
0.07500000000000001 -0.0011453425637869008 8.988868652126945E-4 0.022016249359141125
0.07500000000000001 -0.0011493484185056049 0.001149348418505605 0.0069133463411109874
0.07480520180108952 -0.0011486800820674887 9.878081442107544E-4 0.015671660907793452
0.07500000000000001 -9.010759867108922E-4 0.001148466675441947 0.019578577720646143
0.07480114418801187 -9.974525778576292E-4 0.0011508083301088486 0.01509464219906776
0.07473976760120601 -7.595232964384615E-4 0.0011483357816608904 0.026547941944506204
0.07500000000000001 9.955582175745204E-4 8.184749407271094E-4 0.05310070839572382
0.07500000000000001 8.233249182415567E-4 9.944342261391666E-4 0.051625125934788484
0.07480926397216571 7.691950784599748E-4 -0.0011454291067929119 0.02486356666350796
0.07500000000000001 6.447840967298157E-4 -0.001143815372112309 0.029915507643631913
0.07480520180108952 0.0011404933638183555 9.817296673365083E-4 0.018014944537705895
0.07482539940702565 0.0010403311931317526 8.241354194746475E-4 0.044668730932862916
0.07500000000000001 0.0011390557934014213 6.432273484172861E-4 0.032270940699457254
0.07500000000000001 0.001007262160456279 5.710522871285882E-4 0.06629997352130443
0.07500000000000001 0.0011363821338043287 3.8677946212850925E-4 0.03942320727679514
0.07476052807431242 0.0011373281215402494 4.8706056754838886E-4 0.0351359036225163
0.07500000000000001 9.731082133912777E-4 -5.559645723277242E-4 0.07345991158625534
0.07500000000000001 0.0011394932907817644 -3.868137382808377E-4 0.03884778421035598
sandesh amgai
sandesh amgai on 13 Sep 2022
Hello Alex,
how did you code the double fourier function?

Sign in to comment.

Categories

Find more on Get Started with Curve Fitting Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!