solution of transcedental equation
1 view (last 30 days)
Show older comments
function beta1 = trial0(beta, eps1, eps2, epsm,k0,h)
S1 = sqrt(power(beta,2)-(eps1*power(k0,2)));
S2 = sqrt(power(beta,2)-(epsm*power(k0,2)));
S3 = sqrt(power(beta,2)-(eps2*power(k0,2)));
beta1 = tanh(S2*h)*((eps1*eps2*power(S2,2))+(power(epsm,2)*S1*S3)) + (S2*((eps1*S3)+(eps2*S1))*epsm);
end
eps1 = 1.5471;
eps2 = 1.5431;
eps1m = -9.894 ;
epsm2 = 1.0458;
epsm = eps1m + i*eps2m;
lambda = 633;
k0 = (2*pi)/lambda;
h = 50;
find the value of beta
1 Comment
Catalytic
on 14 Oct 2021
You have not accepted any answers previously provided to you. That is a bit of a disincentive for people to help you.
Accepted Answer
Matt J
on 14 Oct 2021
Edited: Matt J
on 14 Oct 2021
eps1 = 1.5471;
eps2 = 1.5431;
eps1m = -9.894 ;
eps2m = 1.0458;
epsm = eps1m + i*eps2m;
lambda = 633;
k0 = (2*pi)/lambda;
h = 50;
[b,fval]=fminsearch(@(b) abs(trial0(complex(b(1),b(2)), eps1, eps2, epsm,k0,h)) ,[1,1]);
beta=complex(b(1),b(2)), fval
function beta1 = trial0(beta, eps1, eps2, epsm,k0,h)
S1 = sqrt(power(beta,2)-(eps1*power(k0,2)));
S2 = sqrt(power(beta,2)-(epsm*power(k0,2)));
S3 = sqrt(power(beta,2)-(eps2*power(k0,2)));
beta1 = tanh(S2*h)*((eps1*eps2*power(S2,2))+(power(epsm,2)*S1*S3)) + (S2*((eps1*S3)+(eps2*S1))*epsm);
end
7 Comments
Matt J
on 14 Oct 2021
Well, if we've answered your first question, please Accept-click it and post the related question in its own thread.
More Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!