calculating fourier series for the given functions and drawing the curve?
6 views (last 30 days)
Show older comments
hey guys, one of my friends has just given me a question.I wrote the code for it but don't know how to draw the chart or curve for that,would you please help me out...??thanks
here's the code: clc syms x f=exp(-abs(x)); N=15; a_0=(1/pi)*int(f*cos(0*x),-pi,pi) for n=1:N a_n(n)=(1/pi)*int(f*cos(n*x),-pi,pi); b_n(n)=(1/pi)*int(f*sin(n*x),-pi,pi); end a_n b_n f_new=a_0/2; for n=1:N f_new=f_new+a_n(n)*cos(n*x)+b_n(n)*sin(n*x); end
0 Comments
Answers (1)
VBBV
on 17 Sep 2024
clear
syms x
N=[5 15 30];
f1=exp(-abs(x));
a_01=(1/pi)*int(f1.*cos(0*x),x,-pi,pi);
f_new10=vpa(a_01/2)
f2=exp(-(x));
a_02=(1/pi)*int(f2.*cos(0*x),x,-2,1);
f_new20=vpa(a_02/2)
f3 = -2*x.^2;
a_03=(1/pi)*int(f3.*cos(0*x),x,1,2);
f_new30=vpa(a_03/2)
f4 = 4;
a_04=(1/pi)*int(f4.*cos(0*x),x,2,pi);
f_new40=vpa(a_04/2)
X = linspace(-pi,pi,100);
for k = 1:length(X)
for n=1:N(2)
a_n1(n)=(1/pi)*int(f1.*cos(n*x),x,-pi,pi);
b_n1(n)=(1/pi)*int(f1.*sin(n*x),x,-pi,pi);
f_new1(n,k)=f_new10+a_n1(n).*cos(n*X(k))+b_n1(n).*sin(n*X(k));
a_n2(n)=(1/pi)*int(f2.*cos(n*x),x,-2,1);
b_n2(n)=(1/pi)*int(f2.*sin(n*x),x,-2,1);
f_new2(n,k)=f_new20+a_n2(n).*cos(n*X(k))+b_n2(n).*sin(n*X(k));
a_n3(n)=(1/pi)*int(f3.*cos(n*x),x,1,2);
b_n3(n)=(1/pi)*int(f3.*sin(n*x),x,1,2);
f_new3(n,k)=f_new30+a_n3(n).*cos(n*X(k))+b_n3(n).*sin(n*X(k));
a_n4(n)=(1/pi)*int(f4.*cos(n*x),x,2,pi);
b_n4(n)=(1/pi)*int(f4.*sin(n*x),x,2,pi);
f_new4(n,k)=f_new40+a_n4(n).*cos(n*X(k))+b_n4(n).*sin(n*X(k));
end
F_new(k) = sum(f_new1(:,k)); % similarly do it for remaining functions
end
plot(F_new)
0 Comments
See Also
Categories
Find more on Calculus in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!