Optimization with respect to matrix
2 views (last 30 days)
Show older comments
Hi,
I have the following problem to solve: argmin_X || Xu - b ||^2 where u and b are given (vectors), and || . || is l-2 norm. So it looks like ordinary least squares but with optimization that goes over matrix X. Is it possible to do this in Matlab?
3 Comments
Chaowei Chen
on 3 Sep 2011
what is the dimension of u and b? But generally I think you will get infinite many solutions giving you || X*u - b || ^2 =0.
For example, say u and b are both 2D vectors. X is therefore 2 by 2 matrix, having 4 degree of freedom to let you assign values. You can arbitrarily choose x_11 and x_12 such that u_1*x_11+u_2*x_12=b_1 and u_1*x_21+u_2*x_22=b_2. Therefore, the 2-norm is zero.
Answers (1)
Daniel Shub
on 30 Aug 2011
The l^2-norm does not care about the shape of your data so you can just reshape your matrix into a vector.
u = u(:);
b = b(:);
3 Comments
See Also
Categories
Find more on Get Started with Optimization Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!