Finding error like unrecognized function or variable ' tridiagonal'
1 view (last 30 days)
Show older comments
Program:
% solution of 2D elliptical solution
% using Line Over Relaxation Method(LSOR)
% ep is accepted error%Tridiag: Tridiagonal equation zsolver banded system
clc;
clear all;
eps = 0.001;
omega = input(' enter the omega value: ');
beta = input (' enter the beta value: ');
n= 10000;
nx = 21;
ny = 42;
T(1:nx, 1:ny-1) = 0;
TN(1:nx, 1:ny-1) = 0;
T(1:nx, ny)= 100;
TN(1:nx, ny) = 100;
% its number of iteration
coeff = ( 2*(1+beta^2));
for iterations = 1:n
for j = 2:ny-1
a(1:nx-2) = -coeff;
b(1:nx-3)= omega;
c(1:nx-3)= omega;
for i = 2:nx-1
r(i-1) = - coeff*(1-omega)*T(i,j)-omega*beta^2*T(i,j+1)-omega*beta^2*TN(i,j-1);
end
r(1)= r(1)-omega*TN(1,j);
r(nx-2)= r(nx-2)-omega*TN(nx,j);
y = tridiagonal(c,a,b,r);
for k = 1:nx-2
TN(k+1,j)= y(k);
end
end
error = abs(TN-T);
totalerror = sum(error,'all');
if totalerror <= eps
break
end
T=TN;
end
iterations;
contour(TN');
RESULTS;
enter the omega value: 1.3
enter the beta value: 1
Unrecognized function or variable 'tridiagonal'.
Error in LSOR (line 28)
y = tridiagonal(c,a,b,r);
Accepted Answer
C B
on 2 Oct 2021
Edited: C B
on 2 Oct 2021
function main
% solution of 2D elliptical solution
% using Line Over Relaxation Method(LSOR)
% ep is accepted error%Tridiag: Tridiagonal equation zsolver banded system
clc;
clear all;
eps = 0.001;
omega = input(' enter the omega value: ');
beta = input (' enter the beta value: ');
n= 10000;
nx = 21;
ny = 42;
T(1:nx, 1:ny-1) = 0;
TN(1:nx, 1:ny-1) = 0;
T(1:nx, ny)= 100;
TN(1:nx, ny) = 100;
% its number of iteration
coeff = ( 2*(1+beta^2));
for iterations = 1:n
for j = 2:ny-1
a(1:nx-2) = -coeff;
% b(1:nx-3)= omega;
% c(1:nx-3)= omega;
b(1:nx-2)= omega;
c(1:nx-2)= omega;
for i = 2:nx-1
r(i-1) = - coeff*(1-omega)*T(i,j)-omega*beta^2*T(i,j+1)-omega*beta^2*TN(i,j-1);
end
r(1)= r(1)-omega*TN(1,j);
r(nx-2)= r(nx-2)-omega*TN(nx,j);
y = Tridiagonal(c,a,b,r);
for k = 1:nx-2
TN(k+1,j)= y(k);
end
end
error = abs(TN-T);
totalerror = sum(error,'all');
if totalerror <= eps
break
end
T=TN;
end
iterations;
contour(TN');
end
function x = Tridiagonal(e,f,g,r)
% Tridiagonal: Tridiagonal equation solver banded system
% x = Tridiagonal(e,f,g,r): Tridiagonal system solver.
% input:
% e = subdiagonal vector
% f = diagonal vector
% g = superdiagonal vector
% r = right hand side vector
% output:
% x = solution vector
n=length(f);
% forward elimination
for k = 2:n
factor = e(k)/f(k-1);
f(k) = f(k) - factor*g(k-1);
r(k) = r(k) - factor*r(k-1);
end
% back substitution
x(n) = r(n)/f(n);
for k = n-1:-1:1
x(k) = (r(k)-g(k)*x(k+1))/f(k);
end
end
3 Comments
C B
on 2 Oct 2021
Edited: C B
on 3 Oct 2021
you can go through https://in.mathworks.com/help/matlab/matlab_prog/scripts-and-functions.html
More Answers (0)
See Also
Categories
Find more on Graphics Object Programming in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!