Nonlinear curve fitting, how to ?
2 views (last 30 days)
Show older comments
Hi,
I have two nonlinear functions defining the response of a system in frequency domain
H(f;Y0,Z0)= Z / ((j*2*pi*f)+(j*2*pi*f*Y0)+Z0)
H(f;Y1,Z1)= Z / ((j*2*pi*f)+(j*2*pi*f*Y1)+Z1)
to see the difference in two responses in decibles I introduce S(f) as
S(f) = 20*log(H(f;Y1,Z1)/H(f;Y0, Z0))
I also have predetermined values for S(f) obtained from experimental work where in both cases f is a known vector.
My main aim is to find values for Y1, Z1, Y0, Z0 through optimization in order to fit
S(f) = 20*log(H(f;Y1,Z1)/H(f;Y0, Z0))
to my experimental readings
How can I best achieve this ?
0 Comments
Accepted Answer
the cyclist
on 28 Jun 2014
If you have the Statistics Toolbox, you should be able to do this with the nlinfit() function.
4 Comments
the cyclist
on 28 Jun 2014
I expect you have a coding error. Those data look like they could be fit just fine with nlinfit, assuming you have the proper functional form defined.
Here is a very simple example of nlinfit:
rng(1)
% Here is an example of using nlinfit(). For simplicity, none of
% of the fitted parameters are actually nonlinear!
% Define the data to be fit
x=(0:1:10)'; % Explanatory variable
y = 5 + 3*x + 7*x.^2; % Response variable (if response were perfect)
y = y + 2*randn((size(x)));% Add some noise to response variable
% Define function that will be used to fit data
% (F is a vector of fitting parameters)
f = @(F,x) F(1) + F(2).*x + F(3).*x.^2;
F_fitted = nlinfit(x,y,f,[1 1 1]);
% Display fitted coefficients
disp(['F = ',num2str(F_fitted)])
% Plot the data and fit
figure
plot(x,y,'*',x,f(F_fitted,x),'g');
legend('data','fit')
More Answers (1)
See Also
Categories
Find more on Get Started with Curve Fitting Toolbox in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!