How to input train data and test data (features of images) using SVM calssifier
3 views (last 30 days)
Show older comments
This is the code that i have got for classification using SVM. Can any one tell me how should i input train data and test data in the code,...
% Classfication using SVM classifier.............
% 1. Load the sample data
load dataname
% 2. Create data, a two-column matrix containing sepal length and sepal width % measurements for 150 irises.
data = [meas(:,1), meas(:,2)];
% 3. From the species vector, create a new column vector, groups, to classify data % into two groups: data and non-data.
groups = ismember(dataset,'data');
% 4. Randomly select training and test sets.
[train, test] = crossvalind('holdOut',groups); cp = classperf(groups);
% 5. Train an SVM classifier using a linear kernel function and plot the grouped data.
svmStruct = svmtrain(data(train,:),groups(train),'showplot',true);
% 6. Add a title to the plot, using the KernelFunction field from the svmStruct % structure as the title.
title(sprintf('Kernel Function: %s',... func2str(svmStruct.KernelFunction)),... 'interpreter','none');
% 7. Use the svmclassify function to classify the test set.
classes = svmclassify(svmStruct,data(test,:),'showplot',true);
% 8. Evaluate the performance of the classifier.
classperf(cp,classes,test); cp.CorrectRate
% ans =
% 0.9867
% 9. Use a one-norm, hard margin support vector machine classifier by changing the
% boxconstraint property.
figure svmStruct = svmtrain(data(train,:),groups(train),... 'showplot',true,'boxconstraint',1e6);
classes = svmclassify(svmStruct,data(test,:),'showplot',true);
% 10. Evaluate the performance of the classifier.
classperf(cp,classes,test); cp.CorrectRate
%ans =
% 0.9867
2 Comments
sabiya fatima
on 29 Jul 2020
i am getting error in line 4:
Undefined function 'crossvalind' for input
arguments of type 'char'.
please help to solve it
Answers (1)
Haddouche Abdelouahab
on 21 Mar 2017
I would like to help with my project represented in classification EEG using lda pca ica and svm
9 Comments
See Also
Categories
Find more on Classification in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!