Should the kth nearest neighbour loss decrease as k increases?

2 views (last 30 days)
I'm using ClassificationKNN.fit to train my classifier on some data. I've tried changing the number of neighbours to obtain the smallest loss, but as I increase the number of neighbours, the loss increases. I've tried different datasets and some of the example datasets, but every time it's the same.
I've following the commands on the 'Classification Using Nearest Neighbours' page:
load fisheriris
X = meas;
Y = species;
mdl = ClassificationKNN.fit(X,Y,'NumNeighbors',4);
rloss = resubLoss(mdl)
Should I be looking at the cross validated loss instead? I've tried lots of different sized datasets and every time I get the best results with one neighbour when testing.
Many Thanks!

Accepted Answer

Ilya
Ilya on 11 Feb 2014
Yes, you should be looking at the cross-validated loss.

More Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!