Main Content

# wave2lp

Laurent polynomials associated with wavelet

## Syntax

```[Hs,Gs,Ha,Ga] = wave2lp(W) ```

## Description

`[Hs,Gs,Ha,Ga] = wave2lp(W)` returns the four Laurent polynomials associated with the wavelet `W` (see `liftwave`).

The pairs `(Hs,Gs)` and `(Ha,Ga)` are the synthesis and the analysis pair respectively.

The `H`-polynomials (`G`-polynomials) are low-pass (high-pass) polynomials.

For an orthogonal wavelet, `Hs` = `Ha` and `Gs` = `Ga`.

## Examples

```% Get Laurent polynomials associated to the "lazy" wavelet. [Hs,Gs,Ha,Ga] = wave2lp('lazy') Hs(z) = 1 Gs(z) = z^(-1) Ha(z) = 1 Ga(z) = z^(-1) % Get Laurent polynomials associated to the db1 wavelet. [Hs,Gs,Ha,Ga] = wave2lp('db1') Hs(z) = + 0.7071 + 0.7071*z^(-1) Gs(z) = - 0.7071 + 0.7071*z^(-1) Ha(z) = + 0.7071 + 0.7071*z^(-1) Ga(z) = - 0.7071 + 0.7071*z^(-1) % Get Laurent polynomials associated to the bior1.3 wavelet. [Hs,Gs,Ha,Ga] = wave2lp('bior1.3') Hs(z) = + 0.7071 + 0.7071*z^(-1) Gs(z) = ... + 0.08839*z^(+2) + 0.08839*z^(+1) - 0.7071 + 0.7071*z^(-1) - 0.08839*z^(-2) ... - 0.08839*z^(-3) Ha(z) = ... - 0.08839*z^(+2) + 0.08839*z^(+1) + 0.7071 + 0.7071*z^(-1) + 0.08839*z^(-2) ... - 0.08839*z^(-3) Ga(z) = - 0.7071 + 0.7071*z^(-1) ```

## See Also

Introduced before R2006a

## Support Get trial now