bisenetv2
Create BiSeNet v2 convolutional neural network for semantic segmentation
Since R2025a
Syntax
Description
Use the bisenetv2
function to semantically segment images
using the BiSeNet v2 convolutional neural network. Using the pretrained network, trained on
171 image classes of the COCO-Stuff data set [2], you can perform inference
on test images which contain these classes.
To perform semantic segmentation on a custom data set,
you must train the network on your data set using the trainnet
(Deep Learning Toolbox) function.
Note
This functionality requires Deep Learning Toolbox™ and the Computer Vision Toolbox™ Model for BiSeNet v2 Semantic Segmentation Network. You can install the Computer Vision Toolbox Model for BiSeNet v2 Semantic Segmentation Network from Add-On Explorer. For more information about installing add-ons, see Get and Manage Add-Ons.
returns a BiSeNet v2 network pretrained on 171 image classes of the COCO-Stuff data set and
configured for transfer learning using input images of the specified size
net
= bisenetv2(imageSize
,numClasses
)imageSize
and the specified number of classes
numClasses
. Train this network on a custom data set using the using
the trainnet
(Deep Learning Toolbox)
function.
[
specifies options using one or more name-value arguments in addition to the input arguments
from the previous syntax. When you specify one or more network options using a name-value
argument, you create a custom BiSeNet v2 network with uninitialized weights.net
] = bisenetv2(imageSize
,numClasses
,Name=Value
)
For example, bisenetv2(ChannelRatio=16)
specifies the channel ratio
between the semantic branch and detail branch as 16
.
Examples
Input Arguments
Name-Value Arguments
Output Arguments
More About
References
[1] Yu, Changqian, Changxin Gao, Jingbo Wang, Gang Yu, Chunhua Shen, and Nong Sang. “BiSeNet V2: Bilateral Network with Guided Aggregation for Real-Time Semantic Segmentation.” International Journal of Computer Vision 129, no. 11 (November 2021): 3051–68. https://doi.org/10.1007/s11263-021-01515-2.
[2] Caesar, Holger, Jasper Uijlings, and Vittorio Ferrari. “COCO-Stuff: Thing and Stuff Classes in Context.” In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1209–18. Salt Lake City, UT, USA: IEEE, 2018. https://doi.org/10.1109/CVPR.2018.00132.
Version History
Introduced in R2025a
See Also
Objects
dlnetwork
(Deep Learning Toolbox)
Functions
trainnet
(Deep Learning Toolbox) |deeplabv3plus
|unet
|unet3d
|pretrainedEncoderNetwork
|semanticseg
|evaluateSemanticSegmentation