sin
Symbolic sine function
Syntax
Description
sin(
returns the sine function of
X
)X
.
Examples
Sine Function for Numeric and Symbolic Arguments
Depending on its arguments, sin
returns
floating-point or exact symbolic results.
Compute the sine function for these numbers. Because these numbers are not symbolic
objects, sin
returns floating-point results.
A = sin([-2, -pi, pi/6, 5*pi/7, 11])
A = -0.9093 -0.0000 0.5000 0.7818 -1.0000
Compute the sine function for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, sin
returns unresolved symbolic
calls.
symA = sin(sym([-2, -pi, pi/6, 5*pi/7, 11]))
symA = [ -sin(2), 0, 1/2, sin((2*pi)/7), sin(11)]
Use vpa
to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ -0.90929742682568169539601986591174,... 0,... 0.5,... 0.78183148246802980870844452667406,... -0.99999020655070345705156489902552]
Plot Sine Function
Plot the sine function on the interval from to .
syms x fplot(sin(x),[-4*pi 4*pi]) grid on
Handle Expressions Containing Sine Function
Many functions, such as diff
,
int
, taylor
, and
rewrite
, can handle expressions containing
sin
.
Find the first and second derivatives of the sine function:
syms x diff(sin(x), x) diff(sin(x), x, x)
ans = cos(x) ans = -sin(x)
Find the indefinite integral of the sine function:
int(sin(x), x)
ans = -cos(x)
Find the Taylor series expansion of sin(x)
:
taylor(sin(x), x)
ans = x^5/120 - x^3/6 + x
Rewrite the sine function in terms of the exponential function:
rewrite(sin(x), 'exp')
ans = (exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2
Evaluate Units with sin
Function
sin
numerically evaluates these units
automatically: radian
, degree
,
arcmin
, arcsec
, and
revolution
.
Show this behavior by finding the sine of x
degrees and
2
radians.
u = symunit; syms x f = [x*u.degree 2*u.radian]; sinf = sin(f)
sinf = [ sin((pi*x)/180), sin(2)]
You can calculate sinf
by substituting for
x
using subs
and then using
double
or vpa
.