latex
LaTeX form of symbolic expression
Syntax
Description
Examples
Find the LaTeX form of the symbolic expressions x^2 + 1/x
and sin(pi*x) + phi
.
syms x phi chr = latex(x^2 + 1/x)
chr = '\frac{1}{x}+x^2'
chr = latex(sin(pi*x) + phi)
chr = '\phi +\sin\left(\pi \,x\right)'
Find the LaTeX form of the symbolic array S
.
syms x
S = [sym(1)/3 x; exp(x) x^2]
S =
chr = latex(S)
chr = '\left(\begin{array}{cc} \frac{1}{3} & x\\ {\mathrm{e}}^x & x^2 \end{array}\right)'
Perform computation using several symbolic matrix variables, and then find their LaTeX forms.
Create 3
-by-3
and 3
-by-1
symbolic matrix variables.
syms A 3 matrix syms X [3 1] matrix
Find the Hessian matrix of . Derived equations involving symbolic matrix variables appear in typeset as they would be in textbooks.
f = X.'*A*X
f =
H = diff(f,X,X.')
H =
Generate the LaTeX forms of the symbolic matrix variables f
and H
.
chrf = latex(f)
chrf = '{\textbf{X}}^{\mathrm{T}}\,\textbf{A}\,\textbf{X}'
chrH = latex(H)
chrH = '{\textbf{A}}^{\mathrm{T}}+\textbf{A}'
Perform computation using symbolic matrix functions, and then find their LaTeX forms.
Create a 3
-by-1
symbolic matrix variable.
syms X [3 1] matrix
Create a symbolic matrix function that represents the formula .
syms f(X) [1 1] matrix keepargs f(X) = X.'*X
f(X) =
Find the derivative of with respect to .
Df = diff(f,X)
Df(X) =
Generate the LaTeX forms of the symbolic matrix functions f
and Df
.
chrf = latex(f)
chrf = '{\textbf{X}}^{\mathrm{T}}\,\textbf{X}'
chrDf = latex(Df)
chrDf = '2\,{\textbf{X}}^{\mathrm{T}}'
Modify generated LaTeX by changing symbolic settings using the sympref
function.
Generate the LaTeX form of the expression with the default symbolic setting.
sympref("default");
chr = latex(sym(pi))
chr = '\pi '
Set "FloatingPointOutput"
to true
to return symbolic output in floating-point format. Generate the LaTeX form of in floating-point format.
sympref("FloatingPointOutput",true);
chr = latex(sym(pi))
chr = '3.1416'
Now change the output order of a symbolic polynomial. Create a symbolic polynomial and set "PolynomialDisplayStyle"
to "ascend"
. Generate the LaTeX form of the polynomial sorted in ascending order.
syms x; poly = x^2 - 2*x + 1; sympref("PolynomialDisplayStyle","ascend"); chr = latex(poly)
chr = '1-2\,x+x^2'
The symbolic settings that you set using sympref
persist through your current and future MATLAB® sessions. Restore the default values by specifying the "default"
option.
sympref("default");
For and from to , plot the 3-D surface . Store the axes object in a
by using gca
. Use latex
interpreter for the tick labels.
Create the -axis ticks by spanning the -axis limits at intervals of pi/2
. Convert the axis limits to precise multiples of pi/2
using round
and get the symbolic tick values in S
. Set the locations of the -axis ticks by using the xticks
function. Create the LaTeX labels for the -axis by using arrayfun
to apply latex
to S
and then concatenating $
. Display the labels by using the xticklabels
function.
Repeat these steps for the -axis. Set the - and -axes labels and the title using the latex
interpreter.
syms x y f = y*sin(x)-x*cos(y); fsurf(f,[-2*pi 2*pi]) a = gca; a.TickLabelInterpreter = "latex"; S = sym(a.XLim(1):pi/2:a.XLim(2)); S = sym(round(S/pi*2)*pi/2); xticks(double(S)); labels = "$" + arrayfun(@latex,S,UniformOutput=false) + "$"; xticklabels(labels); S = sym(a.YLim(1):pi/2:a.YLim(2)); S = sym(round(S/pi*2)*pi/2); yticks(double(S)) labels = "$" + arrayfun(@latex,S,UniformOutput=false) + "$"; yticklabels(labels); xlabel("$x$",Interpreter="latex"); ylabel("$y$",Interpreter="latex"); zlabel("$z$",Interpreter="latex"); titletext = "$" + latex(f) + "$ for $x$ and $y$ in $[-2\pi,2\pi]$"; title(titletext,Interpreter="latex")
Input Arguments
Input, specified as a symbolic number, variable, vector, array, function, expression, matrix variable, or symbolic matrix function.
Data Types: sym
| symfun
| symmatrix
| symfunmatrix
Version History
Introduced before R2006aThe latex
function accepts an input argument of type
symfunmatrix
. For an example, see LaTeX Form of Symbolic Matrix Functions.
The latex
function accepts an input argument of type
symmatrix
. For an example, see LaTeX Form of Symbolic Matrix Variables.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)