sinh
Symbolic hyperbolic sine function
Syntax
Description
Examples
Hyperbolic Sine Function for Numeric and Symbolic Arguments
Depending on its arguments, sinh
returns
floating-point or exact symbolic results.
Compute the hyperbolic sine function for these numbers. Because
these numbers are not symbolic objects, sinh
returns
floating-point results.
A = sinh([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2])
A = -3.6269 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.5000i... 0.0000 + 0.7818i 0.0000 - 1.0000i
Compute the hyperbolic sine function for the numbers converted
to symbolic objects. For many symbolic (exact) numbers, sinh
returns
unresolved symbolic calls.
symA = sinh(sym([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2]))
symA = [ -sinh(2), 0, 1i/2, sinh((pi*2i)/7), -1i]
Use vpa
to approximate symbolic results
with floating-point numbers:
vpa(symA)
ans = [ -3.6268604078470187676682139828013,... 0,... 0.5i,... 0.78183148246802980870844452667406i,... -1.0i]
Plot Hyperbolic Sine Function
Plot the hyperbolic sine function on the interval from to .
syms x fplot(sinh(x),[-pi pi]) grid on
Handle Expressions Containing Hyperbolic Sine Function
Many functions, such as diff
, int
, taylor
,
and rewrite
, can handle expressions containing sinh
.
Find the first and second derivatives of the hyperbolic sine function:
syms x diff(sinh(x), x) diff(sinh(x), x, x)
ans = cosh(x) ans = sinh(x)
Find the indefinite integral of the hyperbolic sine function:
int(sinh(x), x)
ans = cosh(x)
Find the Taylor series expansion of sinh(x)
:
taylor(sinh(x), x)
ans = x^5/120 + x^3/6 + x
Rewrite the hyperbolic sine function in terms of the exponential function:
rewrite(sinh(x), 'exp')
ans = exp(x)/2 - exp(-x)/2
Input Arguments
Version History
Introduced before R2006a