# rdivide, ./

Symbolic array right division

## Syntax

``A./B``
``rdivide(A,B)``

## Description

example

``A./B` divides `A` by `B`.`
````rdivide(A,B)` is equivalent to `A./B`.```

## Examples

### Divide Scalar by Matrix

Create a `2`-by-`3` matrix.

`B = sym('b', [2 3])`
```B = [ b1_1, b1_2, b1_3] [ b2_1, b2_2, b2_3]```

Divide the symbolic expression `sin(a)` by each element of the matrix `B`.

```syms a sin(a)./B```
```ans = [ sin(a)/b1_1, sin(a)/b1_2, sin(a)/b1_3] [ sin(a)/b2_1, sin(a)/b2_2, sin(a)/b2_3]```

### Divide Matrix by Matrix

Create a `3`-by-`3` symbolic Hilbert matrix and a `3`-by-`3` diagonal matrix.

```H = sym(hilb(3)) d = diag(sym([1 2 3]))```
```H = [ 1, 1/2, 1/3] [ 1/2, 1/3, 1/4] [ 1/3, 1/4, 1/5] d = [ 1, 0, 0] [ 0, 2, 0] [ 0, 0, 3]```

Divide `d` by `H` by using the elementwise right division operator `.\`. This operator divides each element of the first matrix by the corresponding element of the second matrix. The dimensions of the matrices must be the same.

`d./H`
```ans = [ 1, 0, 0] [ 0, 6, 0] [ 0, 0, 15]```

### Divide Expression by Symbolic Function

Divide a symbolic expression by a symbolic function. The result is a symbolic function.

```syms f(x) f(x) = x^2; f1 = (x^2 + 5*x + 6)./f```
```f1(x) = (x^2 + 5*x + 6)/x^2```

## Input Arguments

collapse all

Input, specified as a symbolic scalar variable, matrix variable (since R2021a), function, expression, or vector, matrix, or array of symbolic scalar variables. Inputs `A` and `B` must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.

Input, specified as a symbolic scalar variable, matrix variable (since R2021a), function, expression, or vector, matrix, or array of symbolic scalar variables. Inputs `A` and `B` must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.