glmfit
Fit generalized linear regression model
Syntax
Description
b = glmfit(X,y,distr,Name,Value)'Constant','off' to omit the constant term from the model.
Examples
Input Arguments
Name-Value Arguments
Output Arguments
More About
Alternative Functionality
glmfit is useful when you simply need the output arguments of the
      function or when you want to repeat fitting a model multiple times in a loop. If you need to
      investigate a fitted model further, create a generalized linear regression model object GeneralizedLinearModel by using fitglm or stepwiseglm. A
        GeneralizedLinearModel object provides more features than
        glmfit. 
- Use the properties of - GeneralizedLinearModelto investigate a fitted model. The object properties include information about the coefficient estimates, summary statistics, fitting method, and input data.
- Use the object functions of - GeneralizedLinearModelto predict responses and to modify, evaluate, and visualize the generalized linear regression model.
- You can find the information in the output of - glmfitusing the properties and object functions of- GeneralizedLinearModel.- Output of - glmfit- Equivalent Values in - GeneralizedLinearModel- b- See the - Estimatecolumn of the- Coefficientsproperty.- dev- See the - Devianceproperty.- stats- See the model display in the Command Window. You can find the statistics in the model properties ( - CoefficientCovariance,- Coefficients,- Dispersion,- DispersionEstimated, and- Residuals).- The dispersion parameter in - stats.s- glmfitis the scale factor for the standard errors of coefficients, whereas the dispersion parameter in the- Dispersionproperty of a generalized linear model is the scale factor for the variance of the response. Therefore,- stats.sis the square root of the- Dispersionvalue.
References
[1] Dobson, A. J. An Introduction to Generalized Linear Models. New York: Chapman & Hall, 1990.
[2] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman & Hall, 1990.
[3] Collett, D. Modeling Binary Data. New York: Chapman & Hall, 2002.
Extended Capabilities
Version History
Introduced before R2006a
