Main Content

Diode

Implement diode model

Libraries:
Simscape / Electrical / Specialized Power Systems / Power Electronics

Description

The diode is a semiconductor device that is controlled by its own voltage Vak and current Iak. When a diode is forward biased (Vak > 0), it starts to conduct with a small forward voltage Vf across it. It turns off when the current flow into the device becomes 0. When the diode is reverse biased (Vak < 0), it stays in the off state.

The Diode block is simulated by a resistor, an inductor, and a DC voltage source connected in series with a switch. The switch operation is controlled by the voltage Vak and the current Iak.

The Diode block also contains a series Rs-Cs snubber circuit that can be connected in parallel with the diode device (between nodes A and K).

Examples

The power_diode example illustrates a single pulse rectifier consisting of a Diode block, an RL load, and an AC Voltage source block.

Assumptions and Limitations

  • The Diode block implements a macro model of a diode device. It does not take into account either the geometry of the device or the complex physical processes underlying the state change [1]. The leakage current in the blocking state and the reverse-recovery (negative) current are not considered. In most circuits, the reverse current does not affect converter or other device characteristics.

  • Depending on the value of the inductance Lon, the diode is modeled either as a current source (Lon > 0) or as a variable topology circuit (Lon = 0). The Diode block cannot be connected in series with an inductor, a current source, or an open circuit, unless its snubber circuit is in use.

  • The inductance Lon is forced to 0 if you choose to discretize your circuit.

Ports

Output

expand all

Measurement vector containing two signals. You can demultiplex these signals by using the Bus Selector block provided in the Simulink library.

Signal

Definition

Units

1

Diode current

A

2

Diode voltage

V

Dependencies

To enable this port, check the Show measurement port parameter.

Conserving

expand all

Specialized electrical conserving port associated with the anode.

Specialized electrical conserving port associated with the cathode.

Parameters

expand all

Diode internal resistance Ron, in ohms (Ω). Default is 0.001. The Resistance Ron parameter cannot be set to 0 when the Inductance Lon parameter is set to 0.

Diode internal inductance Lon, in henries (H). Default is 0. The Inductance Lon parameter cannot be set to 0 when the Resistance Ron parameter is set to 0.

Forward voltage of the diode device, in volts (V). Default is 0.8.

Specifies an initial current flowing in the diode device. Default is 0. It is usually set to 0 to start the simulation with the diode device blocked. If the Initial Current IC parameter is set to a value greater than 0, the steady-state calculation considers the initial status of the diode as closed.

Initializing all states of a power electronic converter is a complex task. Therefore, this option is useful only with simple circuits.

Snubber resistance, in ohms (Ω). Default is 500. Set the Snubber resistance Rs parameter to inf to eliminate the snubber from the model.

Snubber capacitance in farads (F). Default is 250e-9. Set the Snubber capacitance Cs parameter to 0 to eliminate the snubber, or to inf to get a resistive snubber.

If selected, adds a Simulink output to the block returning the diode current and voltage. Default is selected.

References

[1] Rajagopalan, V., Computer-Aided Analysis of Power Electronic Systems, Marcel Dekker, Inc., New York, 1987.

[2] Mohan, N., T.M. Undeland, and W.P. Robbins, Power Electronics: Converters, Applications, and Design, John Wiley & Sons, Inc., New York, 1995.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Version History

Introduced before R2006a