# tanh

Hyperbolic tangent

## Description

example

Y = tanh(X) returns the hyperbolic tangent of the elements of X. The tanh function operates element-wise on arrays. The function accepts both real and complex inputs. All angles are in radians.

## Examples

collapse all

Create a vector and calculate the hyperbolic tangent of each value.

X = [0 pi 2*pi 3*pi];
Y = tanh(X)
Y = 1×4

0    0.9963    1.0000    1.0000

Plot the hyperbolic tangent function over the domain $-5\le x\le 5$.

x = -5:0.01:5;
y = tanh(x);
plot(x,y)
grid on

## Input Arguments

collapse all

Input angles in radians, specified as a scalar, vector, matrix, multidimensional array, table, or timetable.

Data Types: single | double | table | timetable
Complex Number Support: Yes

collapse all

### Hyperbolic Tangent

The hyperbolic tangent of an angle x is the ratio of the hyperbolic sine and hyperbolic cosine

$\mathrm{tanh}\left(x\right)=\frac{\mathrm{sinh}\left(x\right)}{\mathrm{cosh}\left(x\right)}=\frac{{e}^{2x}-1}{{e}^{2x}+1}.$

In terms of the traditional tangent function with a complex argument, the identity is

$\mathrm{tanh}\left(x\right)=-i\mathrm{tan}\left(ix\right)\text{\hspace{0.17em}}.$

## Version History

Introduced before R2006a

expand all