ltePSSCH
Physical sidelink shared channel
Syntax
Description
returns
a complex symbol column vector containing the physical sidelink shared
channel (PSSCH) for the specified UE settings structure and codeword
bits. Channel processing performed by the function includes PSSCH-specific
scrambling, QPSK or 16-QAM modulation, and SC-FDMA transform precoding,
as defined in TS 36.211 [1],
Section 9.3. sym
= ltePSSCH(ue
,cw
)
For more information, see Physical Sidelink Shared Channel Processing.
Examples
Create PSSCH Symbols
Create a codeword using the SL-SCH transport channel and encode the bits on the PSSCH.
Initialize a UE settings structure. Specify the codeword length to use for the SL-SCH. Choose a length that is a multiple of 12 symbols for normal cyclic prefix and has 4 bits per symbol for 16-QAM modulation. Pick a standard number of resource blocks, such as 10.
ue = struct('CyclicPrefixSL','Normal'); ue.RV = 0; ue.Modulation = '16QAM'; ue.NSAID = 255; ue.NSubframePSSCH = 0; ue.SidelinkMode = 'D2D'; codewordlength = 5760; % (12 symbols)(4 bps)(12 REperRB)(10 PRB)
Create a codeword using the lteSLSCH
function and encode the bits on the PSSCH. Plot the constellation to show the effects of the SC-FDMA precoding on the 16-QAM modulation symbols.
codeword = lteSLSCH(ue,codewordlength,zeros(100,1));
symbols = ltePSSCH(ue,codeword);
plot(symbols,'o')
Input Arguments
ue
— User equipment settings
structure
User equipment settings, specified as a parameter structure containing these fields:
SidelinkMode
— Sidelink mode
'D2D'
(default) | 'V2X'
| optional
Sidelink mode, specified as 'D2D'
or
'V2X'
.
Data Types: char
| string
CyclicPrefixSL
— Cyclic prefix length
'Normal'
(default) | 'Extended'
| optional
Cyclic prefix length, specified as 'Normal'
or 'Extended'
.
Data Types: char
| string
Modulation
— Modulation type
'QPSK'
| '16QAM'
Modulation type, specified as 'QPSK'
or '16QAM'
.
Data Types: char
| string
NSAID
— Sidelink group destination identity
integer in the interval [0, 255]
Sidelink group destination identity, specified as an integer in the interval [0, 255].
This field is the lower eight bits of the full 24-bit ProSe Layer-2 group destination ID. This
field and the NSubframePSSCH
field control
the value of the scrambling sequence at the start of each
subframe. This field is required only for D2D sidelink.
Data Types: double
NXID
— V2X scrambling identity
integer scalar
V2X scrambling identity, specified as an integer scalar. NXID
is
the 16 bit CRC associated with the PSCCH SCI grant. It is only required for V2X
sidelink.
Data Types: double
NSubframePSSCH
— PSSCH subframe number
integer scalar
PSSCH subframe number in the PSSCH subframe pool, specified as an integer scalar ().
NSubframePSSCH
and NSAID
control the values of the
scrambling sequence. It is only required for D2D
sidelink.
Data Types: double
Data Types: struct
cw
— PSSCH codeword
integer vector
PSSCH codeword, specified as an Mbit-by-1 integer vector. Mbit is the number of bits transmitted on the physical sidelink shared channel in one subframe and must be a multiple of 12. For more information, see Physical Sidelink Shared Channel Processing.
Output Arguments
sym
— Modulated PSSCH symbols
column vector
Modulated PSSCH symbols, returned as an NRE-by-1 column vector. NRE is number of PSSCH resource elements in a subframe. For more information, see Physical Sidelink Shared Channel Processing.
More About
Physical Sidelink Shared Channel Processing
Physical sidelink shared channel (PSSCH) processing includes PSSCH-specific scrambling, QPSK or 16-QAM modulation, and SC-FDMA transform precoding. PSSCH processing follows the processing steps used for PUSCH, with variations defined in TS 36.211, Section 9.3.
For PSSCH, the input codeword length is Mbits = NRE × Nbps, where Nbps is the number of bits per symbol. PSSCH modulation is either QPSK (2 bits per symbol) or 16 QAM (4 bits per symbol).
The number of PSSCH resource elements (NRE) in a subframe is NRE = NPRB × NREperPRB × NSYM and includes symbols associated with the sidelink SC-FDMA guard symbol.
NPRB is the number of physical resource blocks (PRB) used for transmission.
NREperPRB is the number of resource elements in a PRB. Each PRB has 12 resource elements.
NSYM is the number of SC-FDMA symbols in a PSSCH subframe, including symbols associated with the sidelink SC-FDMA guard symbol. The number of SC-FDMA symbols in a PSSCH subframe is 12 for D2D normal cyclic prefix or 10 for D2D extended cyclic prefix and V2X.
The info
structure output by ltePSSCHIndices
provides Mbits and NRE as info.G
and info.Gd
respectively.
The scrambling sequence generator is initialized with at the start of every PSSCH subframe. For D2D sidelink, is the destination identity (NSAID
) obtained from the
sidelink shared channel. For V2X, is the V2X scrambling identity (NXID
). is the subframe number in the PSSCH subframe pool
(NSubframePSSCH
).
ltePSSCH
requires CyclicPrefixSL
to
deduce the number of resource blocks allocated for SC-FDMA precoding
symbols.
Physical Sidelink Shared Channel Indexing
Use the ltePSSCHIndices
function
and the corresponding ltePSSCH
sequence
function to populate the PSSCH subframe resource grid. The PSSCH is
transmitted in the available SC-FDMA symbols in a PSSCH subframe,
using a single layer on antenna port 1000. It excludes each symbol
per slot assigned to PSSCH DM-RS. For more information on PSSCH DM-RS,
see the ltePSSCHDRSIndices
function.
The indices are ordered as the PSSCH modulation symbols should be
mapped, applying frequency-first mapping. The resource elements in
the last SC-FDMA symbol within a subframe are counted in the mapping
process but should not be transmitted. The sidelink-specific SC-FDMA
modulation creates this guard symbol. For more information on mapping
symbols to the resource element grid, see Resource Grid Indexing.
References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access Network. URL: https://www.3gpp.org.
Version History
Introduced in R2016b
See Also
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)